Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/172096
Title: Pemodelan Pengaruh Jari-jari Tumor pada Sistem Penghantaran Obat Cairan Interstisial
Other Titles: Numerical Simulation on the Effect of Solid Tumor Radius on the Interstitial Fluid Transport
Authors: Kartono, Agus
Sari, Yessie Widya
Azahra, Annisa Nur
Issue Date: 2025
Publisher: IPB University
Abstract: Perkembangan teknologi sistem penghantaran obat (DDS) kini semakin luas, DDS dapat menjangkau bahkan hingga ke pusat tumor. Namun, perkembangannya masih mengalami hambatan yaitu berkaitan dengan pengaruh parameter cairan interstisial, seperti tekanan interstisial (IFP). Untuk melihat pengaruh IFP terhadap DDS, maka pemodelan dapat dilakukan dengan menyelesaikan solusi numerik pada tumor padat yang meninjau gradien tekanan cairan interstisial tumor (TIFP) menggunakan persamaan diferensial parsial, contohnya metode beda hingga. Melalui solusi numerik metode beda hingga, diperoleh bahwa ketika R_n/R>0,8 maka terjadi penurunan IFP menuju 0 dan efikasi DDS meningkat, sebaliknya ketika R_n/R<0,8 maka P_i konstan. Pemodelan juga dilakukan untuk melihat pengaruh jari-jari tumor terhadap kelajuan cairan interstisial (IFV). Pada jari-jari tumor R=1 cm, nilai IFV akan meningkat pada nilai R=(0,8-1)cm. IFV tertinggi berada pada orde 10^(-6) m/s, hal ini mengimplikasikan bahwa IFV rendah pada pusat tumor dan semakin tinggi menuju ke luar tumor.
Development of drug delivery systems (DDS) has enabled targeted therapeutic penetration into the core regions of solid tumors. However, their efficacy remains constrained by interstitial fluid dynamics, particularly elevated interstitial fluid pressure (IFP). This study employed computational modeling to investigate IFP gradients in solid tumors by numerically solving partial differential equations using finite difference methods. Numerical solutions demonstrated a pressure decay to near-zero values at normalized radial positions exceeding 0.8 tumor radius R_n/R>0,8, correlating with enhanced DDS penetration efficiency. Conversely, regions below this threshold R_n/R<0,8 maintained constant IFP ?(P?_i). Furthermore, analysis of interstitial fluid velocity (IFV) profiles revealed velocity augmentation in peripheral tumor regions R=(0,8-1)cm for R=1 cm, reaching peak magnitudes on the order of 10^(-6) m/s. These findings demonstrate a radial velocity gradient characterized by stagnant flow in the tumor core and convective outward transport in the periphery. The results provide quantitative evidence that heterogeneous fluid dynamics significantly influence drug distribution patterns, suggesting the need for: (1) pressure-modulating therapies to enhance central tumor penetration and (2) flow-optimized delivery strategies to counteract peripheral drug clearance. This computational framework offers a foundation for designing spatially targeted DDS in solid tumors.
URI: http://repository.ipb.ac.id/handle/123456789/172096
Appears in Collections:UT - Physics

Files in This Item:
File Description SizeFormat 
cover_G7401211079_e2b026ab10d54ad1885ca3ad484af437.pdfCover543.97 kBAdobe PDFView/Open
fulltext_G7401211079_8f35274b672b43baae0999c0f6abcf8e.pdf
  Restricted Access
Fulltext1.75 MBAdobe PDFView/Open
lampiran_G7401211079_dea10a08cfa147f8a2ab628fa52bbf36.pdf
  Restricted Access
Lampiran940.76 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.