Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/171934| Title: | Model Prediksi Rendemen Gula Tebu Berbasis Machine Learning di PG XYZ Jawa Barat |
| Other Titles: | Machine Learning Based Sugar Recorvery Prediction Model in XYZ Sugar Mill of West Java |
| Authors: | Marimin Asrol, Muhammad Rosyada, Fatata A'izza |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Industri gula tebu merupakan salah satu sektor strategis yang berperan
penting dalam peningkatan ekonomi dan ketahanan pangan nasional. Dalam
perkembangannya, agroindustri ini menghadapi berbagai tantangan yaitu fluktuasi
hasil produksi pada tiap musim, inefisiensi proses, dan tekanan kompetisi di pasar
domestik maupun internasioanl. Kesenjangan jumlah konsumsi secara nasional
serta kemampuan produksi gula dalam negeri masih menjadi permasalahan
struktural yang belum sepenuhnya teratasi. Kondisi tersebut mendorong
ketergantungan pada impor gula untuk memenuhi kebutuhan konumsi dan industri,
sekaligus menuntut pabrik gula domestik untuk meningkatkan efisiensi,
produktivitas, dan daya saing. Oleh karena itu, optimalisasi proses produksi gula
tebu menjadi aspek krusial dalam upaya meningkatkan rendemen gula tebu,
menekan losses, dan memperkuat kemandirian industri gula secara nasional.
Rendemen gula tebu merupakan indikator penting dalam pengukuran
efisiensi pabrik gula. Angka rendemen gula tebu di Indonesia mengalami
penurunan sebesar 1,91% pada periode 2019–2023 dan mencapai titik terendah
dalam satu dekade, yaitu 6,6% pada tahun 2022. Fluktuasi ini menunjukkan adanya
ketidakefisienan proses. Penelitian ini memperkenalkan model berbasis machine
learning untuk prediksi rendemen gula tebu di pabrik guna mendukung
perencanaan produksi yang lebih baik. Tujuan penelitian ini adalah
mengembangkan model prediksi rendemen akhir menggunakan algoritma machine
learning berdasarkan variabel-variabel kunci dari berbagai tahapan proses
pengolahan, serta penyusunan strategi optimalisasi proses produksi gula tebu
melalui Analytical Network Process (ANP). Data harian dari Pabrik Gula XYZ
(2020–2024) di Jawa Barat digunakan sebagai dasar pengembangan model dengan
algoritma Random Forest dan Extreme Gradient Boosting (XGBoost) yang
dievaluasi menggunakan MSE, MAE, MAPE, R², serta analisis feature importance.
Hasil penelitian menunjukkan bahwa signifikansi variabel yang
menggabungkan wawasan machine learning dengan data empiris pabrik
mengidentifikasi variabel-variabel yang berpengaruh besar terhadap pembentukan
rendemen gula tebu mencakup Boiling House Recovery (BHR), Winter Rendemen
(WR), Pol Tebu, Hasil Pemerahan Gula (HPG), dan Pol Ampas. Variabel tersebut
merepresentasikan pengaruh kinerja stasiun gilingan, efisiensi pemurnian dan
masakan, serta kualitas bahan baku sebagai titik kritis pembentuk rendemen akhir.
Variabel yang memberikan kontribusi besar terhadap variasi nilai rendemen akhir
gula tebu ini dapat dijadikan acuan perbaikan strategis pada proses produksi.
Pembangunan model prediksi rendemen akhir gula tebu dapat dibangun
menggunakan 699 data hari giling dari tahun 2020–2024 dengan 18 variabel utama
yang telah divalidasi pakar akademisi dan praktisi. Hasil pembangunan model
menunjukkan bahwa algoritma XGBoost memberikan performa lebih baik
dibandingkan algoritma Random Forest. Nilai kinerja model dengan XGBoost
memberikan nilai MSE sebesar 0,037, MAE sebesar 0,153, MAPE 1,69%, serta
koefisien determinasi (R²) sebesar 87,16% pada data pengujian. Model berhasil memprediksi rendemen harian secara akurat untuk produksi musim giling tahun
2024.
Berdasarkan hasil diskusi pakar dan pemetaan prioritas ANP, strategi
optimalisasi proses produksi disusun dengan menempatkan Stasiun Pemurnian
sebagai blok/stasiun dengan prioritas tinggi dalam optimalisasi proses produksi.
Dalam pemanfaatan enabler/pemungkin, Dukungan Teknologi menjadi prioritas
tertinggi dalam mengoptimalkan proses di dalam pabrik. Pentingnya integrasi
teknologi dapat meningkatkan kendali proses, efisiensi energi, dan akurasi
pengukuran parameter kritis.
Indikator hasil pemerahan gula (HPG) dan boiling house recovery (BHR)
menjadi prioritas tertinggi klaster indikator yang menjadi perbaikan. Kontribusi
pemerahan awal terhadap total gula tergiling menjadi hal penting dalam
optimalisasi proses produksi gula tebu. Pada klaster Program Strategi, prioritas
tertinggi yaitu pengurangan losses pada titik kritis ampas, blotong, dan tetes,
optimalisasi proses pada tiap stasiun, serta pemeliharaan dan modernisasi mesin.
Selain itu, dukungan kebijakan holding dan pemerintah menjadi enabler penting
dalam keberhasilan implementasi strategi.
Hasil penelitian ini masih memiliki keterbatasan terkait ketersediaan data
real-time, rendahnya ketertelusuran asal bahan baku, serta potensi overfitting akibat
kompleksitas model dan variasi musiman proses produksi. Hasil prediksi yang
dihasilkan perlu dipahami sebagai prediksi berbasis pola historis harian, bukan
representasi penuh dinamika proses pabrik. Secara manajerial, model prediksi
rendemen gula tebu yang dikembangkan direkomendasikan untuk digunakan
sebagai alat pendukung keputusan yang terintegrasi secara bertahap dengan sistem
operasional, termasuk melalui pemanfaatan data internet of things (IoT) dan
integrasi sistem supervisory control and data acquisition (SCADA). Pendekatan ini
diharapkan dapat meningkatkan konsistensi rendemen, ketepatan perencanaan
produksi, serta memperkuat transformasi digitasl dan keberlanjutan agroindustri
gula tebu di Indonesia. Sugarcane industry is one of the strategic sectors that plays an important role in enhancing economic development and national food security. In its development, this agroindustry faces various challenges, including seasonal fluctuations in production output, process inefficiencies, and increasing competitive pressure in both domestic and international markets. The gap between national sugar consumption and domestic production capacity remains a structural issue that has not been fully resolved. This condition has led to continued reliance on sugar imports to meet consumption and industrial demand, while simultaneously requiring domestic sugar mills to improve efficiency, productivity, and competitiveness. Consequently, optimizing sugarcane production processes becomes a critical aspect of efforts to increase sugar recovery, reduce process losses, and strengthen national self-sufficiency in the sugar industry. Sugar recovery is a critical performance metric for sugar mill efficiency. In Indonesia, sugar recovery declined by 1.91% from 2019 to 2023, reaching a decade low of 6.6% in 2022, showing continued process inefficiencies. This study introduces a machine learning–based prediction model to facilitate early detection of process abnormalities and improve production planning. The study's objectives were to create a final sugar recovery prediction model based on multistage process variables using Random Forest and Extreme Gradient Boosting (XGBoost) and to establish process optimization techniques using the Analytical Network Process (ANP). The results indicate that the feature importance study blending machine learning insights with empirical plant knowledge identified Boiling House Recovery (BHR), Winter Recovery (WR), Pol in Cane, Milling Potential Efficiency, and Pol in Bagasse as the most relevant factors impacting ultimate sugar recovery. These variables represent the combined effects of milling station performance, purification and crystallization efficiency, as well as raw material quality, which together constitute critical control points in sugar recovery formation. Consequently, these influential variables can serve as strategic references for process improvement in sugar production. Daily operational data from Sugar Mill XYZ in West Java (2020–2024), encompassing 699 milling days and 18 expert-selected key variables, were utilized to train and evaluate the models. Between the he two algorithm evaluated, XGBoost outperformed Random Forest in predicting final sugar recovery. The XGBoost model achieved an MSE of 0.037, MAE of 0.153, MAPE of 1.69%, and a coefficient of determination (R²) of 87.16% on the testing set. The model successfully predicted daily sugar recovery values for the 2024 milling season with high accuracy. Based on expert judgement and the ANP priority mapping, the process optimization strategy was formulated by positioning the Clarification Station as the block/station with the highest priority for production process optimization. In terms of enabling factors, technological support emerged as the top priority for optimizing internal mill operations. The importance of technological integration lies in its ability to enhance process control, energy efficiency, and the accuracy of critical parameter measurements. Sugar extraction efficiency and boiling house recovery (BHR) were identified as the highest-priority indicators within the indicator cluster requiring improvement. The contribution of early-stage milling performance to total sugar extraction is therefore critical for optimizing sugarcane production processes. Within the strategic program cluster, the highest priorities include reducing losses at critical points-namely bagasse, filter cake, and molasses-optimizing processes at each production station, and implementing machinery maintenance and modernization programs. In addition, policy support from both the holding company and the government serves as a key enabler for the successful implementation of these strategies. This study still has limitations related to the availability of real-time data, low traceability of raw material origins, and the potential for overfitting due to model complexity and seasonal variations in production processes. The predicted results should therefore be interpreted as estimates based on historical daily patterns rather than as a complete representation of actual mill dynamics. From a managerial perspective, the developed sugar recovery prediction model is recommended for use as a decision-support tool that is gradually integrated into operational systems, including through the utilization of Internet of Things (IoT) data and the integration of Supervisory Control and Data Acquisition (SCADA) systems. This approach is expected to enhance recovery consistency, improve production planning accuracy, and strengthen digital transformation and sustainability within Indonesia's sugarcane agroindustry. |
| URI: | http://repository.ipb.ac.id/handle/123456789/171934 |
| Appears in Collections: | MT - Fisheries |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_P0505231006_a2f567df07d44299931487933f7ef8bb.pdf | Cover | 4.62 MB | Adobe PDF | View/Open |
| fulltext_P0505231006_20b3b1940f124181a7bf77527e617feb.pdf Restricted Access | Fulltext | 2.31 MB | Adobe PDF | View/Open |
| lampiran_P0505231006_59b930b7db604fe99f3a7b877e6fa260.pdf Restricted Access | Lampiran | 767.49 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.