Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/171900
Title: Kloning dan Ekspresi Ovalbumin Rekombinan asal Bebek pada Escherichia coli
Other Titles: Cloning and Expression of Recombinant Duck Ovalbumin in Escherichia coli
Authors: Suwanto, Antonius
Rachmania, Nisa
Therese, Miryam Madeleine
Issue Date: 2025
Publisher: IPB University
Abstract: Albumin berperan dalam menjaga tekanan osmotik, menjaga keseimbangan kondisi asam dan basa tubuh, dan berperan sebagai protein pembawa. Salah satu jenis albumin, yaitu ovalbumin (OVA) adalah jenis protein utama merupakan sebagian besar dari bagian putih telur. OVA telah banyak dieksplorasi dalam dunia penelitian serta memiliki kontribusi yang cukup besar dalam bidang pangan dan farmasi. OVA asal bebek punya panjang nukleotida 1,161 pb dan bila dibandingkan dengan ovalbumin ayam, yang telah banyak diteliti, keduanya menyandikan 387 asam amino. Namun terdapat 148 variasi nukleotida diantara keduanya dengan 60 diantaranya menyebabkan perbedaan asam amino. Struktur ovalbumin bebek yang berbeda juga membuat protein ini dapat ditoleransi oleh masyarakat yang alergi terhadap protein ovalbumin asal ayam. Hingga saat ini belum ada penelitian mengenai produksi protein rekombinan ovalbumin asal bebek pada inang bakteri. Tingginya pemanfaatan ovalbumin mendorong kepentingan ovalbumin untuk dapat tersedia secara stabil dan konsisten. Salah satu upaya pemenuhan kebutuhan ovalbumin dapat dicapai melalui pendekatan rekayasa genetika. Oleh karena itu, penelitian ini bertujuan mengekspresikan protein ovalbumin asal bebek pada sistem bakteri Escherichia coli sebagai salah satu langkah penyediaan sumber protein hewani yang konsisten, lebih ramah lingkungan, mengurangi risiko alergi dan sesuai untuk masyarakat vegetarian. Penelitian dibagi menjadi empat tahap utama, yaitu isolasi RNA dan sintesis cDNA gen ovalbumin bebek, proses konstruksi vektor ekspresi dan galur, produksi protein ovalbumin serta karakterisasi protein. Sebelum tahapan pertama dilakukan analisis bioinformatik gen acuan ovalbumin bebek yang didapatkan pada NCBI dan pembuat primer dengan bantuan aplikasi Geneious. Isolasi RNA dilakukan pada bagian magnum jaringan telur Anas platyrhynchos (bebek liar). Total RNA yang didapatkan disintesis menjadi cDNA menggunakan prinsip Reverse Transcriptase Polymerase Chain Reaction (PCR). Keberadaan gen ovalbumin dideteksi menggunakan proses amplifikasi PCR menggunakan pasangan primer yang telah dibuat. Gen ovalbumin lalu disisipkan ke plasmid pGEMT dan ditransformasikan ke Escherichia coli DH5a. Keberadaan gen sisipan dipastikan melalui seleksi biru-putih, PCR koloni dan pemotongan menggunakan enzim restriksi. Gen OVA yang telah terkonfirmasi dipindahkan ke vektor ekspresi dengan cara disisipkan ke plasmid pET-28a menggunakan metode single digest. Vektor ekspresi dikonfirmasi dengan cara PCR Koloni dan ditentukan orientasinya menggunakan pemotongan enzim restriksi. Vektor ekspresi yang telah terkonfirmasi sesuai ditransformasikan ke inang ekspresi Escherichia coli BL21 (DE3) pLySs dan Escherichia coli (DE3) Rosetta. Setelah keberadaan vektor ekspresi pada inang ekspresi sesuai, protein ovalbumin diproduksi pada media Luria Broth (LB) yang telah diberi antibiotik dan diberikan induksi isopropyl-ß-D-1-thiogalactosidase (IPTG). Protein kasar yang dihasilkan ditentukan berat molekulnya dengan metode SDS-PAGE. Purifikasi protein rekombinan OVA juga dilakukan menggunakan kolom His-Trap dan dikarakterisasi berat molekulnya. Ovalbumin rekombinan yang berhasil dikonstruksi disekuens dan disejajarkan dengan ovalbumin unggas lainnnya untuk mengetahui variasi diantaranya. Penelitian berhasil mengisolasi gen ovalbumin sepanjang ~1,161 pasang basa dari bagian magnum jaringan oviduk bebek. Gen OVA berhasil dikonstruksi pada vektor ekspresi dan berhasil diekspresikan pada sistem bakteri Escherichia coli. Hasil konstruksi dapat ditingkatkan dengan melakukan pemberian alkaline phosphate pada proses konstruksi vektor menggunakan metode single digest. Ovalbumin hasil ekspresi memiliki berat molekul ~45 kDa, sesuai dengan target. Produksi protein berhasil dioptimalkan pada kondisi pemberian induksi IPTG 0.25 mM, kecepatan 200 rpm, suhu 37? selama 3 jam. Hal ini ditentukan berdasarkan hasil kurva tumbuh bakteri, pemberian rentang induksi dan waktu produksi. Inang E. coli (DE3) Rosetta mampu mengekspresikan protein ovalbumin lebih baik dibandingkan inang E. coli BL21 (DE3) pLySs. Hal ini diduga karena inang tersebut memiliki plasmid pRARE yang membantu proses transkripsi pada rare codon yang terdapat pada gen ovalbumin. Tahap purifikasi diperlukan untuk memisahkan protein ovalbumin rekombinan dari crude protein yang dihasilkan oleh inang ekspresi. Purifikasi juga berhasil mengkonfirmasi keberhasilan ekspresi protein rekombinan lewat prinsip pemisahan His-tag. Sebanyak 24% protein rekombinan ovalbumin asal bebek berhasil dipisahkan dari setiap protein kasar yang telah dipanen. Penentuan berat molekul mengindikasikan terjadinya pembentukan Inclusion bodies sehingga protein OVA lebih banyak terdapat pada sampel pelet dibandingkan sampel supernatan. Hal ini diperkirakan terjadi karena ovalbumin bersifat toksik bagi bakteri sehingga dilakukan mekanisme pertahanan hidup dengan membentuk agregrat protein rekombinan yang berhasil diekspresikan. Hasil sekuensing ovalbumin rekombinan asal bebek secara berurutan memiliki kekerabatan dengan ovalbumin native asal unggas lain, seperti bebek, ayam, kalkun dan burung puyuh. Terdapat tujuh variasi nukleotida antara OVA rekombinan asal bebek dan OVA native asal bebek dengan dua diantaranya menyebabkan terjadinya codon shift. Keberhasilan proses kloning, ekspresi dan purifikasi protein rekombinan ovalbumin menjadi dasar untuk pengembangan ekspresi ovalbumin pada berbagai sistem mikroba lain yang lebi efektif dan efisien.
Albumin plays a crucial role in maintaining osmotic pressure, regulating the body's acid-base balance, and serving as a carrier protein. One type of albumin, ovalbumin (OVA), is the primary protein that comprises the majority of egg white. OVA has been widely explored in research and has made significant contributions to the food and pharmaceutical industries. Duck OVA has a nucleotide length of 1,161 bp, and when compared to chicken ovalbumin, which has been extensively studied, both proteins encode 387 amino acids. However, there are 148 nucleotide variations between the two, with 60 of these causing amino acid differences. The distinct structure of duck ovalbumin also makes this protein tolerable to people allergic to chicken ovalbumin. To date, there has been no research on the production of recombinant duck ovalbumin protein in bacterial hosts. The high utilization of ovalbumin drives the importance of its stable and consistent availability. One approach to meeting ovalbumin needs can be achieved through genetic engineering. Therefore, this study aims to express the ovalbumin protein from ducks in the Escherichia coli bacterial system as a step toward providing a consistent, more environmentally friendly source of animal protein, reducing the risk of allergies, and making it suitable for vegetarians. The study was divided into four main stages: RNA isolation and cDNA synthesis of the duck ovalbumin gene, construction of expression vectors and strains, ovalbumin protein production, and protein characterization. Prior to the first stage, bioinformatic analysis of the duck ovalbumin reference gene was performed, obtained from NCBI, and primer generation was carried out using the Geneious application. RNA isolation was performed on the magnum of Anas platyrhynchos (wild duck) egg tissue. The resulting total RNA was synthesized into cDNA using Reverse Transcriptase Polymerase Chain Reaction (PCR). The presence of the ovalbumin gene was detected using PCR amplification using pre-designed primer pairs. The ovalbumin gene was then inserted into the pGEMT plasmid and transformed into Escherichia coli DH5a. The presence of the inserted gene was confirmed by blue-white selection, colony PCR, and restriction enzyme digestion. The confirmed OVA gene was transferred to an expression vector by inserting it into the pET-28a plasmid using the single digest method. Colony PCR confirmed the expression vector, and its orientation was determined using restriction enzyme cutting. The confirmed expression vector was transformed into Escherichia coli BL21 (DE3) pLySs and Escherichia coli (DE3) Rosetta expression hosts. After the presence of the expression vector in the appropriate expression host, ovalbumin protein was produced in Luria Broth (LB) media containing antibiotics and isopropyl-ß-D-1-thiogalactosidase (IPTG) induction. The resulting crude protein was determined for molecular weight using the SDS-PAGE method. Purification of the recombinant OVA protein was also carried out using a His-Trap column and its molecular weight was characterized. The successfully constructed recombinant ovalbumin was sequenced and aligned with other avian ovalbumins to determine variations between them. The study successfully isolated the ovalbumin gene, ~1,161 base pairs long, from the magnum of duck oviduct tissue. The OVA gene was successfully constructed in an expression vector and successfully expressed in the Escherichia coli bacterial system. The construction yield can be improved by adding alkaline phosphate during the vector construction process using the single digest method. The expressed ovalbumin has a molecular weight of ~45 kDa, in accordance with the target. Protein production was successfully optimized under the conditions of 0.25 mM IPTG induction, 200 rpm speed, 37? temperature for 3 hours. This was determined based on the results of the bacterial growth curve, the induction range, and production time. The E. coli (DE3) Rosetta host was able to express the ovalbumin protein better than the E. coli BL21 (DE3) pLySs host. This is thought to be because the host has a pRARE plasmid that assists the transcription process at rare codons found in the ovalbumin gene. The purification stage is needed to separate the recombinant ovalbumin protein from the crude protein produced by the expression host. Purification also successfully confirmed the successful expression of the recombinant protein through the His-tag separation principle. A total of 24% of the recombinant ovalbumin protein from ducks was successfully separated from each harvested crude protein. Molecular weight determination indicated the formation of inclusion bodies, resulting in a higher concentration of OVA protein in the pellet sample than in the supernatant sample. This is thought to occur because ovalbumin is toxic to bacteria, which then activates a survival mechanism by forming aggregates of the successfully expressed recombinant protein. The results are as follows: The sequence of recombinant ovalbumin from ducks is related to native ovalbumin from other birds, such as ducks, chickens, turkeys, and quails. There are seven nucleotide variations between the recombinant OVA from ducks and the native OVA from ducks, two of which cause codon shifts. The successful cloning, expression, and purification of the recombinant ovalbumin protein provide the basis for developing more effective and efficient ovalbumin expression in various other microbial systems.
URI: http://repository.ipb.ac.id/handle/123456789/171900
Appears in Collections:MT - Mathematics and Natural Science

Files in This Item:
File Description SizeFormat 
cover_G3501241040_c83311d00fe0489180ae2bf2e22dda2a.pdfCover519.84 kBAdobe PDFView/Open
fulltext_G3501241040_a5ef845be6bf44b18cf34281263aa5d5.pdf
  Restricted Access
Fulltext1.64 MBAdobe PDFView/Open
lampiran_G3501241040_9e6bc5822c50470196e2a1337dd3c82a.pdf
  Restricted Access
Lampiran1.06 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.