Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/171814
Title: Peramalan Harga Bitcoin menggunakan Model ARMA-GARCH
Other Titles: 
Authors: Setiawaty, Berlian
Budiarti, Retno
Syamsudin, Smaragdy Radhiya
Issue Date: 2025
Publisher: IPB University
Abstract: Penelitian ini bertujuan untuk mengidentifikasi penggunaan model ARMA– GARCH dalam memprediksi volatilitas Bitcoin serta mengevaluasi akurasinya berdasarkan MAPE. Data harga harian Bitcoin periode 1 Januari 2023–31 Desember 2023 dipraproses melalui differencing satu kali, translasi agar seluruh nilai positif, dan transformasi Box–Cox. Berdasarkan analisis ACF–PACF dan perbandingan AIC, model mean terbaik adalah ARMA(0,0). Uji Ljung–Box menunjukkan residual tidak berkorelasi, sedangkan uji ARCH–LM mengindikasikan heteroskedastisitas bersyarat sehingga volatilitas dimodelkan menggunakan GARCH(0,1). Evaluasi menunjukkan MAPE 20,223% pada data train, 22,930% pada data uji 15 langkah ke depan, dan rata-rata MAPE 20,177% dari lima percobaan set.seed terbaik, yang termasuk kategori prediksi baik. Hasil ini menegaskan bahwa model ARMA–GARCH mampu menangkap pola harga dan volatilitas Bitcoin secara stabil serta layak digunakan untuk peramalan jangka pendek dan pendukung pengelolaan risiko pada aset kripto yang bergejolak. Kata kunci: ARMA-GARCH, volatilitas, Bitcoin
This study aims to identify the use of the ARMA–GARCH model for predicting Bitcoin volatility and to evaluate its accuracy using the MAPE metric. Daily Bitcoin prices from January 1, 2023 to December 31, 2023 were preprocessed through onetime differencing, a translation to ensure positive values, and a Box–Cox transformation. Based on ACF–PACF analysis and AIC comparison, the selected mean model is ARMA(0,0). The Ljung–Box test indicates uncorrelated residuals, while the ARCH–LM test confirms conditional heteroskedasticity, leading volatility to be modeled using GARCH(0,1). The evaluation shows a train MAPE of 20.223%, a 15-step-ahead test MAPE of 22.930%, and an average MAPE of 20.177% across the five best set.seed runs, classified as good prediction accuracy. These findings demonstrate that the ARMA–GARCH model effectively captures Bitcoin price dynamics and volatility, making it suitable for short-term forecasting and supporting risk management in highly volatile crypto markets. Keywords: ARMA-GARCH, volatility, Bitcoin
URI: http://repository.ipb.ac.id/handle/123456789/171814
Appears in Collections:UT - Actuaria

Files in This Item:
File Description SizeFormat 
cover_G94190032_14a2e22252034e5eacf3c340abc901a6.pdfCover412.18 kBAdobe PDFView/Open
fulltext_G94190032_368e023e25c54e12a889ce7b4e2b5483.pdf
  Restricted Access
Fulltext1.08 MBAdobe PDFView/Open
lampiran_G94190032_57e4519792d14b0b8997020e184a1563.pdf
  Restricted Access
Lampiran1.58 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.