Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/171767
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHardhienata, Hendradi-
dc.contributor.advisorAlatas, Husin-
dc.contributor.authorSukmayadi, Cecep Hardi-
dc.date.accessioned2025-12-21T10:13:15Z-
dc.date.available2025-12-21T10:13:15Z-
dc.date.issued2025-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/171767-
dc.description.abstractPenelitian ini mengevaluasi model Long Short-Term Memory (LSTM) untuk prediksi harga saham migas dengan optimasi berbasis momentum: gradient descent, gradient descent analogi Newtonian, dan hibrida. Optimasi Newtonian memodelkan pembaruan parameter sebagai gerak partikel dalam fluida kental dengan gaya hambat. Optimasi hibrida terdiri atas dua fase, yaitu fase awal menggunakan akselerasi Nesterov untuk mempercepat konvergensi, dilanjutkan L-BFGS untuk penyempurnaan. Dua optimasi pertama digunakan sebagai baseline. Model diuji pada data historis tiga emiten migas: PT Medco Energi Internasional Tbk., PT Perusahaan Gas Negara Tbk., dan PT Elnusa Tbk. Secara umum, semua model mampu menangkap pola tren historis dengan akurasi yang baik, dan pendekatan hibrida menunjukkan performa yang paling kompetitif pada salah satu emiten (MAPE 1,84%). Meskipun hasilnya belum konsisten di seluruh pengujian, pendekatan ini menunjukkan potensi sebagai alternatif teknik optimasi. Namun, tantangan yang berkaitan dengan kompatibilitas terhadap graph mode TensorFlow masih dapat membatasi efisiensi dan skalabilitas saat implementasi.-
dc.description.abstractThis study evaluates Long Short-Term Memory (LSTM) models for oil and gas stock price prediction using momentum-based optimizations: gradient descent, Newtonian analogy gradient descent, and hybrid optimization. Newtonian optimization models parameter updates as particle motion in a viscous fluid with drag. Hybrid optimization consists of two phases: an initial phase using Nesterov acceleration to accelerate convergence, followed by L-BFGS for refinement. The first two optimizations are used as baselines. The models are tested on historical data from three oil and gas issuers: PT Medco Energi Internasional Tbk., PT Perusahaan Gas Negara Tbk., and PT Elnusa Tbk. In general, all models can capture historical trend patterns with good accuracy, and the hybrid approach shows the most competitive performance on one issuer (MAPE 1.84%). Although the results are not consistent across tests, this approach shows potential as an alternative optimization technique. However, technical challenges remain, particularly related to compatibility with TensorFlow graph mode, which can limit efficiency and scalability during implementation.-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titlePengembangan Model LSTM untuk Prediksi Harga Saham Migas Menggunakan Optimasi Momentum Hibrida Berbasis Newtonian dan L-BFGSid
dc.title.alternativeModel Development for Oil and Gas Stock Forecasting Using Newtonian-L-BFGS Hybrid Optimization-
dc.typeSkripsi-
dc.subject.keywordLSTMid
dc.subject.keywordHybrid optimizationid
dc.subject.keywordMomentum optimizationid
dc.subject.keywordOil and gas stock price predictionid
dc.subject.keywordTensorFlowid
Appears in Collections:UT - Physics

Files in This Item:
File Description SizeFormat 
cover_G7401211073_e47b9b5763164b84bead0f0007bf6008.pdfCover3.04 MBAdobe PDFView/Open
fulltext_G7401211073_3257830d768841c7a9f038b4b0fd4359.pdf
  Restricted Access
Fulltext10.07 MBAdobe PDFView/Open
lampiran_G7401211073_2ff45c8d43ea4eddad8a116d4b90f639.pdf
  Restricted Access
Lampiran3.52 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.