Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/171600| Title: | Penggerombolan Volume Produksi Perikanan Tangkap di Indonesia Berbasis Model Deret Waktu |
| Other Titles: | Clustering of Capture Fisheries Production Volume in Indonesia Based on Time Series Model |
| Authors: | Afendi, Farit Mochamad Susetyo, Budi Ain, Karimatu |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Indonesia sebagai negara maritim memiliki potensi besar pada sektor
perikanan tangkap. Volume produksinya bervariasi antar provinsi karena perbedaan
sumber daya ikan dan kondisi geografis. Penelitian ini bertujuan mengelompokkan
provinsi di Indonesia berdasarkan pola volume produksi perikanan tangkap
menggunakan pendekatan penggerombolan deret waktu berbasis model. Setiap
provinsi dimodelkan dengan SARIMA, kemudian dihitung jarak antar model
menggunakan Jarak Piccolo. Proses penggerombolan dilakukan dengan metode
hierarki, menghasilkan lima gerombol optimal dengan nilai Silhouette Score
sebesar 0,626. Setiap gerombol direpresentasikan oleh satu prototipe yang
dimodelkan ulang untuk melakukan peramalan. Hasil evaluasi menunjukkan bahwa
pendekatan pemodelan berbasis gerombol mampu mengurangi jumlah model dari
30 menjadi 5, dengan nilai rata-rata MAPE peramalan sebesar 17%. Meskipun
terdapat peningkatan error pada beberapa provinsi, sebagian besar masih memiliki
selisih MAPE < 10% dibanding pemodelan individu. Temuan ini menunjukkan
bahwa pendekatan gerombol tetap mampu memberikan akurasi peramalan yang
layak dengan efisiensi komputasi yang lebih tinggi, serta dapat dimanfaatkan dalam
penyusunan strategi pengelolaan perikanan tangkap lintas wilayah Indonesia, as a maritime country, has great potential in the capture fisheries sector. The production volume varies across provinces due to differences in fish resources and geographical conditions. This study aims to cluster provinces in Indonesia based on the time series pattern of capture fisheries production volume using a model-based approach. Each province was modeled using SARIMA, and Piccolo Distance was used to measure dissimilarity between models. Hierarchical clustering resulted in five optimal clusters with a Silhouette Score of 0.626. Each cluster was represented by a prototype, which was re-modeled for forecasting. Evaluation showed that the clustering-based approach reduced the number of models from 30 to 5, achieving an average MAPE 17%. Although certain provinces experienced higher forecasting errors, most showed a MAPE difference of less than 10% compared to individual modeling. These findings indicate that cluster-based forecasting can still provide acceptable accuracy with significantly reduced computational burden, making it a useful tool for regional fisheries management and planning. |
| URI: | http://repository.ipb.ac.id/handle/123456789/171600 |
| Appears in Collections: | UT - Statistics and Data Sciences |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G1401211001_ff5bc7e2c68b4d78b23cdbcfccb1262e.pdf | Cover | 514.19 kB | Adobe PDF | View/Open |
| fulltext_G1401211001_2603d9a71dd94d4699c401f1fa920f08.pdf Restricted Access | Fulltext | 1.4 MB | Adobe PDF | View/Open |
| lampiran_G1401211001_4486b33eacb14e06bc42b4e699209245.pdf Restricted Access | Lampiran | 1.02 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.