Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/171455| Title: | Downscaling Curah Hujan Pulau Jawa Berbasis Pix2Pix |
| Other Titles: | Rainfall Downscaling over Java Island Using Pix2Pix |
| Authors: | Faqih, Akhmad Muttaqien, Furqon Hensan Jannah, Salamah Zukhrufa |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Curah hujan menjadi unsur iklim dengam keragaman dan fluktuasi yang
tinggi di Indonesia. Pulau Jawa memiliki topografi yang kompleks sehingga curah
hujan antar wilayahnya sangat bervariasi. Peningkatan resolusi dan akurasi data
curah hujan dapat dilakukan melalui metode statistical downscaling. Metode ini
didasarkan pada pendekatan berbasis data dan memiliki keunggulan dalam efisiensi
komputasi, akan tetapi lemah dalam sisi akurasi data. Deep learning dengan metode
Pix2Pix dapat menjadi solusi karena memiliki kemampuan yang baik dalam
menangani bentuk data yang beragam seperti data iklim. Evaluasi dan analisis
dilakukan pada hasil downscaling Pix2Pix dengan data RegCM non-hydrostatic
yang mempertimbangkan aspek topografi. Nilai model terbaik diperoleh pada
epoch ke-20 dengan RMSE 9,66 mm, FSS 0,66, SSIM 0,96, dan TSS 0,72. Model
menghasilkan data curah hujan yang cukup baik untuk intensitas ringan hingga
sedang namun belum optimal dalam hujan ekstrim, terutama di dataran tinggi baik
dalam skala harian maupun tahunan. Data hasil model dapat menggambarkan
variasi curah hujan musiman secara spasial bahkan saat terjadinya fenomena iklim
ENSO. Berdasarkan hasil tersebut, metode Pix2Pix dapat menjadi alternatif
pendekatan downscaling curah hujan yang lebih cepat dan akurat untuk mendukung
analisis variabilitas serta dampak curah hujan di berbagai bidang. Rainfall is a climate variable with high variations and fluctuations in Indonesia, with Java island has a complex topography that contribute to rainfall disparities across regions. Improved resolution and accuracy of rainfall data can be done through statistical downscaling method. This method is based on a data-driven approach and has advantages in computational efficiency. Deep learning with Pix2Pix method can be a potential solution due to its robust performance in diverse datasets, such as climate data. Evaluation and analysis are based on Pix2Pix downscaling results with non-hydrostatic RegCM results that consider topographic aspects. The best model values were achieved at the 20th epoch, yielding an RMSE of 9,66 mm, an FSS of 0,66, an SSIM of 0,96, and an a TSS of 0,72. The model can generate accurate rainfall data for light to moderate rainfall but not optimal for extreme rainfall, particularly within highlands areas, on both daily and annual timescales. The model output can capture seasonal spatial variation in rainfall, including during ENSO climate events. Based on these results, the model can serve as an alternative approach for more efficient and accurate rainfall downscaling, thereby supporting improved assessments of rainfall impacts across various sectors. |
| URI: | http://repository.ipb.ac.id/handle/123456789/171455 |
| Appears in Collections: | UT - Geophysics and Meteorology |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G2401211037_ff36ffd7aeee431bb678bc0c41b5898b.pdf | Cover | 610.53 kB | Adobe PDF | View/Open |
| fulltext_G2401211037_15c8c35e87914512a73722bfad78c1d1.pdf Restricted Access | Fulltext | 2.23 MB | Adobe PDF | View/Open |
| lampiran_G2401211037_674f569d13c54d76b8ceb95f027935dd.pdf Restricted Access | Lampiran | 568.23 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.