Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/171088Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | Suhardiyanto, Herry | - |
| dc.contributor.author | Abdillah, Dimas Muhammad Daffa | - |
| dc.date.accessioned | 2025-09-16T00:42:08Z | - |
| dc.date.available | 2025-09-16T00:42:08Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/171088 | - |
| dc.description.abstract | Sayuran merupakan kebutuhan pokok manusia dalam memenuhi nutrisi, seperti serat dan vitamin yang tidak mampu diproduksi di dalam tubuh. Sawi dan selada sebagai sayuran yang berbentuk daun paling banyak diminati karena lebih mudah dalam pembudidayaannya. Namun, diperlukan alternatif metode budi daya dalam pemenuhan permintaan sayuran di daerah perkotaan yang lahannya terbatas. Hidroponik sebagai metode budi daya menggunakan air untuk mengalirkan nutrisi dapat dijadikan alternatif di daerah perkotaan. Dalam budi daya menggunakan hidroponik, nutrisi perlu diberikan secara optimal karena perbedaan kandungan nutrisi dapat memengaruhi hasil panen. Hasil panen yang didapatkan pada setiap perlakuan nutrisi dapat diprediksi menggunakan metode pemodelan artificial neural networks (ANN). Pemodelan ANN dapat memprediksi hasil panen yang berupa bobot segar dengan input berupa berbagai faktor lingkungan, termasuk kondisi nutrisi tanaman. Penelitian ini dilakukan untuk membuat pemodelan bobot segar tanaman sayuran daun pada hidroponik. Tanaman yang dibudidayakan diberikan ragam perlakuan nutrisi makro kontrol, 200%, 150%, 50%, dan 0% yang diamati setiap 3 hari sekali. Hasil pengamatan kemudian dijadikan dataset dalam pengembangan model ANN untuk pakcoy, dan model ANN untuk selada romaine. Pengembangan model ANN untuk pakcoy menghasilkan struktur terbaik berupa 9 input node, 2 hidden node, dan 1 output node. Kemudian, pengembangan model ANN untuk selada romaine menghasilkan struktur terbaik berupa 9 input node, 8 hidden node, dan 1 output node. Evaluasi dari pengembangan model ANN didapatkan nilai R2 sebesar 0,9923 dan nilai RMSE sebesar 0,0176 untuk model ANN pakcoy, dan nilai R2 sebesar 0,9810 dan nilai RMSE sebesar 0,0240 untuk model ANN selada romaine yang menunjukkan kedua model ANN memiliki performa yang baik. | - |
| dc.description.abstract | Vegetables are a basic human need in fulfilling nutrients, such as fiber and vitamins. Bokchoy and lettuce as leafy vegetables are most in demand because they are easier to cultivate. However, alternative cultivation methods are needed to fulfill the demand for vegetables in urban areas where land is limited. Hydroponics as a cultivation method using water to circulate nutrients can be used as an alternative in urban areas. In hydroponic cultivation, nutrients need to be provided optimally because differences in nutrient content can affect crop yields. The yield obtained in each nutrient treatment can be predicted using artificial neural networks (ANN) modelling method. ANN modelling can predict crop yields in the form of fresh weight with inputs in the form of various environmental factors, including plant nutrition conditions. This research was conducted to modelling the fresh weight of leafy vegetable plants in hydroponics. The cultivated plants were given the variety treatments in the form of control, 200%, 150%, 50%, and 0% macro nutrients which were observed every 3 days. The observation results were then used as datasets in the development of ANN model for bokchoy, and ANN model for lettuce. The ANN model development for bokchoy resulted in the best structure of 9 input nodes, 2 hidden nodes, and 1 output nodes. Then, the development of the ANN model for lettuce resulted in the best structure consisting of 9 input nodes, 8 hidden nodes, and 1 output node. Evaluation of the ANN model development obtained an R2 value of 0.9923 and an RMSE value of 0.0176 for bokchoy, and an R2 value of 0.9810 and an RMSE value of 0.0240 for lettuce which shows that both models have good performance. | - |
| dc.description.sponsorship | null | - |
| dc.language.iso | id | - |
| dc.publisher | IPB University | id |
| dc.title | Pemodelan Bobot Segar Sayuran Daun pada Sistem Hidroponik Menggunakan Artificial Neural Networks | id |
| dc.title.alternative | Modelling of Fresh Weight Leafy Vegetable Crops on Hydroponic System Using Artificial Neural Networks | - |
| dc.type | Skripsi | - |
| dc.subject.keyword | Artificial Neural Network | id |
| dc.subject.keyword | hidroponik | id |
| dc.subject.keyword | sawi | id |
| dc.subject.keyword | selada | id |
| Appears in Collections: | UT - Agricultural and Biosystem Engineering | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_F14190068_a86e1a4c2de94ff2a22e8fe8b38a509c.pdf | Cover | 422.48 kB | Adobe PDF | View/Open |
| fulltext_F14190068_6912460236ee4f4fb69c05092bf969bd.pdf Restricted Access | Fulltext | 831.15 kB | Adobe PDF | View/Open |
| lampiran_F14190068_be0b9170cfd34231928fc40aa08d67e8.pdf Restricted Access | Lampiran | 391.05 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.