Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/170883
Title: Pengembangan Sistem Pemantauan dan Kontrol Udara PM2.5 Menggunakan PMS5003 di Lingkungan Bengkel
Other Titles: Development of a PM2.5 Air Monitoring and Control System Using the PMS5003 Sensor in a Workshop Environment
Authors: Ariyanto, Dodik
RizkySuro, Erry
Issue Date: 2025
Publisher: IPB University
Abstract: Peningkatan jumlah kendaraan bermotor di Indonesia berdampak signifikan terhadap kualitas udara, terutama di lingkungan kerja seperti bengkel. Penelitian ini bertujuan merancang dan mengimplementasikan sistem pemantauan dan kontrol udara berbasis Internet of Things (IoT) di Bengkel Akastra Toyota. Sistem ini menggunakan sensor MQ-7 untuk mendeteksi karbon monoksida (CO), sensor PMS5003 untuk mendeteksi partikel debu (PM2.5), dan perangkat air purifier yang dikontrol oleh mikrokontroler ESP32. Data hasil pengukuran dikirimkan secara real-time ke platform IoT melalui koneksi internet dan divisualisasikan pada dashboard berbasis website. Hasil penelitian menunjukkan bahwa akurasi sensor PMS5003 mencapai 92,81% dan sensor MQ-7 sebesar 95,03%. Analisis regresi digunakan untuk mengevaluasi hubungan antara data yang dihasilkan oleh sensor, sehingga dapat mengukur keakuratan sensor dan memastikan sistem bekerja dengan optimal dalam memantau kualitas udara.
The increasing number of motor vehicles in Indonesia has significantly impacted air quality, particularly in workplace environments such as workshops. This study aims to design and implement an air monitoring and purification system based on the Internet of Things (IoT) at the Akastra Toyota Workshop. The system utilizes an MQ-7 sensor to detect carbon monoxide (CO), a PMS5003 sensor to detect dust particles (PM2.5), and an air purifier controlled by an ESP32 microcontroller. Measurement data is transmitted in real-time to an IoT platform via an internet connection and visualized on a web-based dashboard. The research results show that the accuracy of the PMS5003 sensor reached 92.81%, and the MQ-7 sensor reached 95.03%. The regression analysis was used to evaluate the relationship between the data produced by the sensors, thereby measuring the sensors accuracy and ensuring the system operates optimally in monitoring air quality
URI: http://repository.ipb.ac.id/handle/123456789/170883
Appears in Collections:UT - Computer Engineering Tehcnology

Files in This Item:
File Description SizeFormat 
cover_J0304202171_adc7bca0825a444d8d6305bcd9df1fed.pdfCover4.51 MBAdobe PDFView/Open
fulltext_J0304202171_a112d830b07c4e33893bc11bd464a243.pdf
  Restricted Access
Fulltext3.37 MBAdobe PDFView/Open
lampiran_J0304202171_9296938a64ba4f9e991d514e52f07fe0.pdf
  Restricted Access
Lampiran2.64 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.