Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/170882
Title: Analisis Tingkat Kematangan Pisang Cavendish Berbasis Warna Kulit dengan Sensor TCS34725
Other Titles: Analysis of Cavendish Banana Ripeness Level Based on Skin Color Using TCS34725 Sensor
Authors: Wahjuni, Sri
Maulidan, Muhammad Hafizh
Issue Date: 2025
Publisher: IPB University
Abstract: Pisang Cavendish merupakan salah satu komoditas tropis bernilai ekonomi tinggi. Namun, proses penilaian kematangan buah ini masih dilakukan secara manual dan subjektif, sehingga rentan terhadap kesalahan dan inkonsistensi. Penelitian ini merancang sistem klasifikasi otomatis menggunakan sensor warna TCS34725 dan metode logika fuzzy Mamdani untuk mengelompokkan pisang ke dalam tiga tingkat kematangan: Mentah, Mengkal, dan Matang. Proses klasifikasi melibatkan tahapan fuzzifikasi nilai RGB, inferensi berbasis 9 aturan fuzzy dominan, dan defuzzifikasi menggunakan metode nilai representatif. Sistem diuji menggunakan 15 buah pisang baru, masing-masing dengan pembacaan lima kali di tiga titik (pangkal, tengah, ujung). Hasil klasifikasi ditampilkan melalui LCD dan dikirim ke dashboard IoT secara real-time. Evaluasi menunjukkan sistem memiliki akurasi sebesar 73,33% dengan 11 data benar dari 15 sampel. Sistem ini terbukti cukup efektif dan berpotensi digunakan sebagai alat bantu klasifikasi kematangan buah secara otomatis dan non-destruktif.
Cavendish bananas are a High-value tropical commodity. However, ripeness assessment is still manually and subjectively performed, leading to inconsistency and errors. This study developed an automatic classification system using the TCS34725 color sensor and Mamdani fuzzy logic to categorize ripeness levels: Unripe, Midripe, and Ripe. The classification process involves RGB fuzzification, inference using nine dominant fuzzy rules, and defuzzification with representative values. The system was tested on 15 new bananas, each measuRed five times at three different points (base, middle, tip). Results were displayed on an LCD and sent to an IoT dashboard in real-time. Evaluation showed an accuracy of 73.33%, with 11 out of 15 samples correctly classified. This system is effective and has potential for automatic, non-destructive ripeness classification.
URI: http://repository.ipb.ac.id/handle/123456789/170882
Appears in Collections:UT - Computer Engineering Tehcnology

Files in This Item:
File Description SizeFormat 
cover_J0304211157_ecc436f5570d42d4923214c466ee58df.pdfCover1.47 MBAdobe PDFView/Open
fulltext_J0304211157_e50441a677854543a3d7e8498d8bd1f9.pdf
  Restricted Access
Fulltext1.94 MBAdobe PDFView/Open
lampiran_J0304211157_835f45c4fe6840deb2ccaf6ce8fc9828.pdf
  Restricted Access
Lampiran612.84 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.