Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/170881| Title: | Model Prediksi Kualitas Air Berdasarkan Sensor TDS dan pH dengan Korelasi dan Regresi |
| Other Titles: | Water Quality Prediction Model Based on TDS and pH Sensors with Correlation and Regression |
| Authors: | Aziezah, Nur Alfasih, Hafiz Agi |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Penelitian ini bertujuan untuk menganalisis hubungan antara Total Dissolved
Solids (TDS) dan pH dalam air sungai serta membangun model prediksi kualitas air
menggunakan regresi linier. Penelitian ini dilatarbelakangi oleh meningkatnya
permasalahan kualitas air sungai akibat aktivitas manusia seperti pembuangan
limbah rumah tangga, industri, dan pertanian yang dapat memengaruhi kandungan
TDS dan pH air. Perubahan parameter tersebut berdampak pada ekosistem perairan
dan kesehatan masyarakat yang memanfaatkan air sungai. Oleh karena itu,
dibutuhkan sistem pemantauan yang efisien, akurat, dan berkelanjutan. Dengan
memanfaatkan mikrokontroler ESP32 dan sensor berbasis Internet of Things (IoT),
data TDS dan pH dikumpulkan secara real-time selama 29 hari. Hasil analisis
menunjukkan adanya korelasi positif antara TDS dan pH, dengan nilai koefisien
korelasi sebesar 0,67 yang menunjukkan hubungan sedang. Model regresi linier
sederhana yang dibangun mampu memprediksi pH berdasarkan nilai TDS dengan
akurasi mencapai 67%. Sistem ini berpotensi menjadi solusi pemantauan kualitas
air yang efektif dan berkelanjutan. This study aims to analyze the relationship between Total Dissolved Solids (TDS) and pH in river water and to develop a water quality prediction model using linear regression. This research is motivated by the increasing problem of river water quality due to human activities such as the discharge of domestic, industrial, and agricultural waste, which can affect the TDS content and pH of the water. Changes in these parameters impact the aquatic ecosystem and the health of the people who use river water. Therefore, an efficient, accurate, and sustainable monitoring system is needed. By utilizing an ESP32 microcontroller and Internet of Things (IoT)-based sensors, TDS and pH data were collected in real time for 29 days. The analysis results showed a positive correlation between TDS and pH, with a correlation coefficient of 0.67, indicating a moderate relationship. The simple linear regression model developed was able to predict pH based on TDS values ??with an accuracy of 67%. This system has the potential to be an effective and sustainable water quality monitoring solution. |
| URI: | http://repository.ipb.ac.id/handle/123456789/170881 |
| Appears in Collections: | UT - Computer Engineering Tehcnology |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_J0304211144_1d7fb65323404056a87aa31652e21506.pdf | Cover | 608.72 kB | Adobe PDF | View/Open |
| fulltext_J0304211144_bd1d4c9233c8454c9fec619363e2aca0.pdf Restricted Access | Fulltext | 1.24 MB | Adobe PDF | View/Open |
| lampiran_J0304211144_0f00fe0f9278431d956c927165700c75.pdf Restricted Access | Lampiran | 196.09 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.