Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/170734
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHardhienata, Medria Kusuma Dewi-
dc.contributor.advisorPriandana, Karlisa-
dc.contributor.authorRizkiansyah, Dwinanda-
dc.date.accessioned2025-08-28T04:16:33Z-
dc.date.available2025-08-28T04:16:33Z-
dc.date.issued2025-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/170734-
dc.description.abstractUnmanned Aerial Vehicle (UAV) merupakan salah satu teknologi yang telah banyak dimanfaatkan dalam sistem indoor farming. Untuk mendukung navigasi di lingkungan yang kompleks, dibutuhkan algoritma perencanaan jalur yang efektif, efisien, serta mampu beradaptasi dengan dinamika lingkungan. Penelitian ini berfokus pada pengembangan dan perbandingan performa dua algoritma perencanaan jalur, yaitu D*Lite dan ADRRT*-Connect, dengan tujuan agar keduanya dapat diimplementasikan pada konsep swarm drone dalam ruang tiga dimensi (3D). Mengingat perbedaan karakteristik dasar keduanya, penelitian ini juga melakukan modifikasi sehingga algoritma hasil pengembangan diberi nama baru, yakni D-Path (pengembangan dari D*Lite) dan A-Path (pengembangan dari ADRRT*-Connect). Pengujian dilakukan untuk memvalidasi bahwa algoritma yang dimodifikasi tetap mempertahankan sifat dasar algoritma acuannya, sekaligus mengukur performanya berdasarkan tiga parameter utama, yaitu efisiensi waktu, optimalitas jalur, dan kemampuan menghindari rintangan. Hasil pengujian menunjukkan bahwa algoritma D-Path memiliki kinerja yang lebih unggul dibandingkan A-Path, dengan waktu komputasi rata-rata 90,55% lebih efisien dan jalur tempuh yang 31,19% lebih optimal. Meskipun demikian, keduanya sama-sama berhasil menghindari seluruh rintangan yang ada di lingkungan simulasi. Temuan ini membuktikan bahwa baik D-Path maupun A-Path layak diterapkan pada sistem swarm drone di lingkungan indoor farming, namun D-Path memberikan performa yang lebih baik secara keseluruhan.-
dc.description.abstractUnmanned Aerial Vehicles (UAVs), have been widely utilized in indoor farming systems. To support navigation in complex environments, an effective, efficient, and adaptive path planning algorithm is required. This research focuses on the development and performance comparison of two path planning algorithms, namely D*Lite and ADRRT-Connect*, with the objective of enabling their implementation within the swarm drone concept in three-dimensional (3D) environments. Considering the fundamental differences in their characteristics, this study introduces modifications to both algorithms, resulting in newly developed variants referred to as D-Path (derived from DLite) and A-Path (derived from ADRRT-Connect). Experimental testing was conducted to validate that the modified algorithms preserve the essential properties of their original counterparts while also assessing their performance based on three key parameters: time efficiency, path optimality, and obstacle avoidance capability. The results demonstrate that the D-Path algorithm outperforms A-Path, achieving an average computational time improvement of 90.55% and producing paths that are 31.19% more optimal. Nevertheless, both algorithms successfully avoided all obstacles within the simulation environment. These findings indicate that while both D-Path and A-Path are suitable for application in swarm drone systems for indoor farming, D-Path provides superior overall performance.-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titlePengembangan Algoritma Path Planning Swarm Drone pada Lingkungan Indoor Farmingid
dc.title.alternativeDevelopment of Drone Swarm Path Planning Algorithm in Indoor Farming Environment-
dc.typeSkripsi-
dc.subject.keywordpath planningid
Appears in Collections:UT - Computer Science

Files in This Item:
File Description SizeFormat 
cover_G6401211117_2675d34a60144c58acfd0e38c86d1581.pdfCover425.84 kBAdobe PDFView/Open
fulltext_G6401211117_6a5a4d9d050d4ca1af26b25f3db37cc9.pdf
  Restricted Access
Fulltext5.89 MBAdobe PDFView/Open
lampiran_G6401211117_99e72fb595f44e619c643b851038d756.pdf
  Restricted Access
Lampiran5.62 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.