Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/170731
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHardhienata, Medria Kusuma Dewi-
dc.contributor.advisorAdrianto, Hari Agung-
dc.contributor.authorAbdurrahman, Imaduddin-
dc.date.accessioned2025-08-28T04:04:04Z-
dc.date.available2025-08-28T04:04:04Z-
dc.date.issued2025-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/170731-
dc.description.abstractModa transportasi Transjakarta mengalami peningkatan penggunaan secara signifikan pada awal tahun 2023. Peningkatan ini menyebabkan opini yang beredar mengenai Transjakarta di masyarakat bermunculan. Opini masyarakat terhadap moda transportasi Transjakarta dapat diteliti dengan analisis sentimen. Penelitian ini bertujuan untuk melakukan analisis sentimen opini masyarakat terhadap Transportasi Transjakarta menggunakan pendekatan machine learning. Data yang digunakan adalah tweet media sosial X dengan kata kunci “Transjakarta” pada rentang 1 Januari 2023 - 14 Juni 2023 sebanyak 238.734 tweet. Tahapan penelitian terdiri dari pengambilan data, praproses data, pembobotan kata, resampling data, pembagian data, klasifikasi menggunakan algoritma machine learning serta evaluasi kinerja algoritma. Dalam penelitian ini akan diuji tiga algoritma machine learning, yaitu algoritma maximum entropy, naive bayes dan support vector machine (SVM) untuk menganalisis sentimen masyarakat terhadap moda transportasi TransJakarta. Sentimen dibagi menjadi positif, netral dan negatif yang sudah diberi label menggunakan mesin dan diperiksa secara manual. Hasil simulasi menunjukkan bahwa model terbaik diperoleh dengan metode support vector machine dengan precision sebesar 72%, recall sebesar 71%, F1-score sebesar 71% dan akurasi sebesar 71%.-
dc.description.abstractTransjakarta's transportation mode experienced a significant increase in usage in early 2023. This increase caused opinions circulating about Transjakarta in the community to emerge. Public opinion on Transjakarta's mode of transportation can be examined by sentiment analysis. This study aims to analyze public opinion sentiment towards Transjakarta Transportation using a machine learning approach. The data used was 238,734 tweets from social media X with the keyword "Transjakarta" in the range of January 1, 2023 - June 14, 2023. The research stages consist of data collection, data preprocessing, word weighting, data resampling, data sharing, classification using machine learning algorithms and algorithm performance evaluation. In this study, three machine learning algorithms will be tested, namely maximum entropy, naive bayes and support vector machine (SVM) algorithms to analyze public sentiment towards TransJakarta transportation modes. Sentiment is divided into positive, neutral and negative which have been labeled using a machine and checked manually. The simulation results showed that the best model was obtained by the support vector machine method with a precision of 72%, recall of 71%, F1-score of 71% and accuracy of 71%.-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titleAnalisis Sentimen Masyarakat terhadap Transportasi Transjakarta Menggunakan Maximum Entropy, Naive Bayes dan Support Vector Machineid
dc.title.alternativeAnalysis of Public Sentiment on Transjakarta Transportation Using Maximum Entropy, Naive Bayes and Support Vector Machine-
dc.typeSkripsi-
dc.subject.keywordanalisis sentimenid
dc.subject.keywordtransjakartaid
dc.subject.keywordMachine learningid
dc.subject.keywordSupport Vector Machines (SVM)id
dc.subject.keywordNaive Bayesid
dc.subject.keywordmaximum entropyid
Appears in Collections:UT - Computer Science

Files in This Item:
File Description SizeFormat 
cover_G64190023_7606a1368e7142668a5c379a3b3a69b7.pdfCover420.48 kBAdobe PDFView/Open
fulltext_G64190023_cb2ce2b07e004704b3373b33e8e01b02.pdf
  Restricted Access
Fulltext1.16 MBAdobe PDFView/Open
lampiran_G64190023_f834e33e452244baa2eaf046c9717696.pdf
  Restricted Access
Lampiran455.67 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.