Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/170194| Title: | PERANCANGAN MODEL DETEKSI KANOPI JAMBU BIJI (Psidium guajava L.) BERBASIS SEGMENTASI CITRA DRONE MULTISPEKTRAL DAN DEEP LEARNING |
| Other Titles: | DEVELOPMENT CANOPY DETECTION MODEL OF GUAVA (psidium guajava L.) TREES USING MULTISPECTRAL DRONE IMAGE SEGMENTATION AND DEEP LEARNING |
| Authors: | Supriyanto alfarizi, Farhan ali |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Pemantauan kondisi tanaman secara spasial menjadi aspek penting dalam
pengelolaan kebun buah, termasuk tanaman jambu biji (Psidium guajava L). Citra
multispektral dari drone menyediakan data resolusi tinggi yang mampu merekam
perbedaan spektral vegetasi secara detail. Namun, segmentasi objek kanopi secara
akurat masih menjadi tantangan, terutama dalam membedakan kanopi pohon dari
latar belakang seperti tanah, rumput, dan belukar. Penelitian ini merancang model
segmentasi berbasis deep learning dengan arsitektur U-Net untuk memisahkan
kanopi jambu biji dari latar belakang menggunakan input citra multispektral drone
yang telah diproses melalui band stacking dan perhitungan indeks vegetasi. Model
dilatih menggunakan citra patch berukuran 256 × 256 piksel dan diuji performanya
menggunakan metrik evaluasi seperti Precision, Recall, F1-Score, dan Intersection
over Union (IoU). Hasil menunjukkan bahwa model mampu mengenali objek
kanopi dengan akurasi yang tinggi. Temuan ini mengindikasikan bahwa model
yang dirancang efektif dalam segmentasi spasial objek vegetasi, serta dapat
beroperasi dengan baik dalam memisahkan kanopi pohon jambu biji dari tutupan
lahan lain seperti tanah, rumput, dan belukar. Spatial monitoring of crop conditions is a crucial aspect in managing fruit orchards, including guava (Psidium guajava L.) plantations. Multispectral imagery from Unmanned Aerial Vehicles (UAV) or Drone, provides high-resolution data capable of capturing detailed spectral differences in vegetation. Segmenting canopy objects remains a challenge, particularly in distinguishing tree canopies from backgrounds such as soil, grass, and shrubs. This study proposes a deep learningbased segmentation model using the U-Net architecture to separate guava canopies from the background by utilizing drone multispectral imagery that has been preprocessed through band stacking and vegetation index calculation. The model was trained on 256×256 pixel image patches and evaluated using metrics such as Precision, Recall, F1-Score, and Intersection over Union (IoU). The results show that the model is capable of recognizing canopy objects with high accuracy. This finding indicates that the designed model is effective in spatial segmentation of vegetation objects and can perform well in separating guava tree canopies from other land cover such as soil, grass, and shrubs |
| URI: | http://repository.ipb.ac.id/handle/123456789/170194 |
| Appears in Collections: | UT - Agricultural and Biosystem Engineering |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_F1401211068_53e39824af824d9bbbdea2d8e38f7bca.pdf | Cover | 449.48 kB | Adobe PDF | View/Open |
| fulltext_F1401211068_7b68dc7c32e542a492e12e6c52014831.pdf Restricted Access | Fulltext | 6.8 MB | Adobe PDF | View/Open |
| lampiran_F1401211068_0aa9ca990ae9418d8c90cf018e55965b.pdf Restricted Access | Lampiran | 308.71 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.