Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/170146
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorWicaksono, Aditya-
dc.contributor.authorFARIDA, RIMA TRIA-
dc.date.accessioned2025-08-23T03:03:39Z-
dc.date.available2025-08-23T03:03:39Z-
dc.date.issued2025-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/170146-
dc.description.abstractBerdasarkan data produksi terdapat kenaikan reject product pada bulan Agustus 2024 sebanyak 3.813 reject dengan persentase 2,15% ini melebihi standar yang telah ditetapkan perusahaan yaitu 0,10%. Akar masalah terjadinya reject tinggi karena ketidaksesuaian parameter mesin produksi. Tujuan penelitian ini adalah mengimplementasikan machine learning untuk memprediksi reject product dengan melakukan perbandingan kinerja algoritma LSTM, RNN, XGBoost, dan Random Forest, serta menerapkan fitur dashboard. Penelitian ini menggunakan metodologi CRISP-DM yang digunakan untuk proses analisis data dan proyek data mining. Perbandingan algoritma dilakukan melalui evaluasi metrik Mean Absolute Error (MAE) dan Root Mean Squared Error (RMSE). Dari perbandingan algoritma yang telah dilakukan, hasilnya menunjukkan bahwa LSTM merupakan algoritma terbaik karena mampu mengenali pola data reject berbasis time series dengan nilai MAE sebesar 36.92 dan RMSE sebesar 114.47. Dengan demikian, algoritma LSTM dipilih untuk diimplementasikan dalam sistem prediksi reject product-
dc.description.abstractBased on production data, there was an increase in rejected products in August 2024, totaling 3,813 rejects with a percentage of 2.15%, which exceeds the company's established standard of 0.10%. The root cause of the high rejection rate is the mismatch of production machine parameters. The objective of this study is to implement machine learning to predict rejected products by comparing the performance of the LSTM, RNN, XGBoost, and Random Forest algorithms, as well as applying dashboard features. This study uses the CRISP-DM methodology for data analysis and data mining projects. The algorithms are compared through the evaluation of the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) metrics. From the algorithm comparison conducted, the results show that LSTM is the best algorithm because it can recognize time series-based reject data patterns with an MAE value of 36.92 and an RMSE value of 114.47. Thus, the LSTM algorithm was selected for implementation in the reject product prediction system.-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titlePerbandingan LSTM, RNN, XGBoost, Random Forest untuk Prediksi Produk Gagal di PT Amerta Indah Otsukaid
dc.title.alternativeComparison of LSTM, RNN, XGBoost, and Random Forest for Predicting Product Failures at PT Amerta Indah Otsuka-
dc.typeTugas Akhir-
dc.subject.keywordcomparisonid
dc.subject.keyworddashboardid
dc.subject.keywordmachine learningid
dc.subject.keywordtime seriesid
Appears in Collections:UT - Software Engineering Technology

Files in This Item:
File Description SizeFormat 
cover_J0303211105_a666dce621f74b879fa16da09db6eaf0.pdfCover3.01 MBAdobe PDFView/Open
fulltext_J0303211105_bb7d3e37c4e34ee2abc339a388f68bd9.pdf
  Restricted Access
Fulltext4.63 MBAdobe PDFView/Open
lampiran_J0303211105_7fe04024b33e4b81a6d4c3538e226468.pdf
  Restricted Access
Lampiran2.26 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.