Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/170146Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | Wicaksono, Aditya | - |
| dc.contributor.author | FARIDA, RIMA TRIA | - |
| dc.date.accessioned | 2025-08-23T03:03:39Z | - |
| dc.date.available | 2025-08-23T03:03:39Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/170146 | - |
| dc.description.abstract | Berdasarkan data produksi terdapat kenaikan reject product pada bulan Agustus 2024 sebanyak 3.813 reject dengan persentase 2,15% ini melebihi standar yang telah ditetapkan perusahaan yaitu 0,10%. Akar masalah terjadinya reject tinggi karena ketidaksesuaian parameter mesin produksi. Tujuan penelitian ini adalah mengimplementasikan machine learning untuk memprediksi reject product dengan melakukan perbandingan kinerja algoritma LSTM, RNN, XGBoost, dan Random Forest, serta menerapkan fitur dashboard. Penelitian ini menggunakan metodologi CRISP-DM yang digunakan untuk proses analisis data dan proyek data mining. Perbandingan algoritma dilakukan melalui evaluasi metrik Mean Absolute Error (MAE) dan Root Mean Squared Error (RMSE). Dari perbandingan algoritma yang telah dilakukan, hasilnya menunjukkan bahwa LSTM merupakan algoritma terbaik karena mampu mengenali pola data reject berbasis time series dengan nilai MAE sebesar 36.92 dan RMSE sebesar 114.47. Dengan demikian, algoritma LSTM dipilih untuk diimplementasikan dalam sistem prediksi reject product | - |
| dc.description.abstract | Based on production data, there was an increase in rejected products in August 2024, totaling 3,813 rejects with a percentage of 2.15%, which exceeds the company's established standard of 0.10%. The root cause of the high rejection rate is the mismatch of production machine parameters. The objective of this study is to implement machine learning to predict rejected products by comparing the performance of the LSTM, RNN, XGBoost, and Random Forest algorithms, as well as applying dashboard features. This study uses the CRISP-DM methodology for data analysis and data mining projects. The algorithms are compared through the evaluation of the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) metrics. From the algorithm comparison conducted, the results show that LSTM is the best algorithm because it can recognize time series-based reject data patterns with an MAE value of 36.92 and an RMSE value of 114.47. Thus, the LSTM algorithm was selected for implementation in the reject product prediction system. | - |
| dc.description.sponsorship | null | - |
| dc.language.iso | id | - |
| dc.publisher | IPB University | id |
| dc.title | Perbandingan LSTM, RNN, XGBoost, Random Forest untuk Prediksi Produk Gagal di PT Amerta Indah Otsuka | id |
| dc.title.alternative | Comparison of LSTM, RNN, XGBoost, and Random Forest for Predicting Product Failures at PT Amerta Indah Otsuka | - |
| dc.type | Tugas Akhir | - |
| dc.subject.keyword | comparison | id |
| dc.subject.keyword | dashboard | id |
| dc.subject.keyword | machine learning | id |
| dc.subject.keyword | time series | id |
| Appears in Collections: | UT - Software Engineering Technology | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_J0303211105_a666dce621f74b879fa16da09db6eaf0.pdf | Cover | 3.01 MB | Adobe PDF | View/Open |
| fulltext_J0303211105_bb7d3e37c4e34ee2abc339a388f68bd9.pdf Restricted Access | Fulltext | 4.63 MB | Adobe PDF | View/Open |
| lampiran_J0303211105_7fe04024b33e4b81a6d4c3538e226468.pdf Restricted Access | Lampiran | 2.26 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.