Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/170111Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | Agmalaro, Muhammad Asyhar | - |
| dc.contributor.author | Syafitri, Aulia Azzahra | - |
| dc.date.accessioned | 2025-08-22T09:02:26Z | - |
| dc.date.available | 2025-08-22T09:02:26Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/170111 | - |
| dc.description.abstract | Pemilu 2024 di Indonesia memperkenalkan penggunaan aplikasi SIREKAP (Sistem Informasi Rekapitulasi) untuk meningkatkan efisiensi dan akurasi dalam perhitungan suara. Penggunaan SIREKAP ini tentunya akan menghasilkan berbagai respons dari publik, salah satunya melalui platform media sosial seperti X (Twitter). Penelitian ini bertujuan untuk melakukan analisis sentimen terhadap opini publik mengenai penggunaan aplikasi SIREKAP pada Pemilu 2024, berdasarkan data dari X. Penelitian ini juga membandingkan kinerja dua model klasifikasi sentimen: Support Vector Machine (SVM), algoritma machine learning berbasis statistika, dan IndoBERTweet, model BERT yang dilatih khusus untuk tweet berbahasa Indonesia. Data yang diperoleh merupakan data imbalance sehingga akan dilakukan SMOTE. Hasil penelitian menunjukkan bahwa IndoBERTweet secara keseluruhan memiliki kinerja yang unggul dibandingkan SVM, dengan nilai accuracy 69% dan f-1 score 68% pada model dengan data imbalance sedangkan pada model dengan SMOTE accuracy 71% dan f-1 score 70%. | - |
| dc.description.abstract | The 2024 General Election in Indonesia introduced the use of the SIREKAP application (Sistem Informasi Rekapitulasi or Recapitulation Information System) to improve efficiency and accuracy in vote counting. The use of SIREKAP has naturally sparked various public responses, including those expressed on social media platforms such as X (formerly Twitter). This study aims to conduct sentiment analysis on public opinions regarding the use of the SIREKAP application in the 2024 General Election, based on data collected from X. The research also compares the performance of two sentiment classification models: Support Vector Machine (SVM), a statictical based machine learning, and IndoBERTweet, a BERT model specifically trained for Indonesian social media contexts. The dataset used is imbalanced, therefore SMOTE (Synthetic Minority Oversampling Technique) is applied. The results show that IndoBERTweet outperforms SVM overall, achieving an accuracy of 69% and an F1 score of 68% on the imbalanced data model, and an accuracy of 71% and an F1 score of 70% on the SMOTE-applied model. | - |
| dc.description.sponsorship | null | - |
| dc.language.iso | id | - |
| dc.publisher | IPB University | id |
| dc.title | Analisis Sentimen Terhadap Penggunaan Aplikasi Sirekap pada Pemilu 2024 Menggunakan SVM dan IndoBERTweet | id |
| dc.title.alternative | Sentiment Analysis on the Use of the Sirekap Application in the 2024 Indonesian General Election Using SVM and IndoBERTweet | - |
| dc.type | Skripsi | - |
| dc.subject.keyword | analisis sentimen | id |
| dc.subject.keyword | Support Vector Machines (SVM) | id |
| dc.subject.keyword | IndoBERTweet | id |
| dc.subject.keyword | SIREKAP | id |
| Appears in Collections: | UT - Computer Science | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G6401211036_a04d46f60fb84fa687afaf268f3e067a.pdf | Cover | 459.67 kB | Adobe PDF | View/Open |
| fulltext_G6401211036_2d957e743ef14dc594d0efd33e4d9c8f.pdf Restricted Access | Fulltext | 1.97 MB | Adobe PDF | View/Open |
| lampiran_G6401211036_87f1e89be1f241c593b6dcdfd46e9245.pdf Restricted Access | Lampiran | 374.97 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.