Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/169983
Title: Kajian Analisis Pola Kemacetan Ruas Jalan Jakarta Selatan menggunakan Spatio Temporal Graph Convolutional Network
Other Titles: Study on Traffic Congestion Pattern Analysis of Road Segments in South Jakarta Using Spatio Temporal Graph Convolutional Network
Authors: Susetyo, Budi
Alamudi, Aam
Taufiq, Fadly Mochammad
Issue Date: 2025
Publisher: IPB University
Abstract: Penelitian ini bertujuan untuk memodelkan dan mengeksplorasi panjang kemacetan lalu lintas pada ruas jalan di Jakarta Selatan dengan pendekatan Spatio Temporal Graph Convolutional Network (ST-GCN). Model ini menggabungkan Graph Convolutional Network (GCN) untuk menangkap keterkaitan spasial dan Gated Recurrent Unit (GRU) untuk memahami dinamika temporal. Data kemacetan diperoleh dari Smart City Jakarta dan dipadukan dengan data spasial OpenStreetMap. Setelah konstruksi graf dan praproses data, model ST-GCN dilatih dan dibandingkan dengan model baseline GRU dan ST-GAT menggunakan metrik MAE dan SMAPE. Hasil menunjukkan bahwa ST-GCN memberikan prediksi yang cukup akurat, dengan SMAPE rata-rata sebesar 8,70% Eksperimen lanjutan dilakukan melalui penggerombolan representasi laten dan teknik node ablation untuk mengevaluasi kontribusi spasial tiap ruas jalan. Temuan mengungkapkan adanya ruas jalan dengan pengaruh signifikan terhadap prediksi, serta pola kemacetan khas berdasarkan gerombol geografis. Hasil penelitian ini memberikan kontribusi metodologis dan praktis dalam pemodelan kemacetan serta perencanaan transportasi berbasis data.
This study aims to model and explore traffic congestion patterns in South Jakarta using the Spatio Temporal Graph Convolutional Network (ST-GCN) approach. The model integrates Graph Convolutional Networks to capture spatial relationships and Gated Recurrent Units to learn temporal dynamics. Traffic data were collected from Smart City Jakarta and combined with OpenStreetMap spatial data. After graph construction and preprocessing, the ST-GCN model was trained and evaluated against GRU and ST-GAT baseline models using MAE and SMAPE metrics. Results show that ST-GCN achieved reliable predictive performance with an average SMAPE of 8,70%. Further analysis involved latent representation clustering and node ablation experiments to evaluate the spatial contribution of each road segment. Findings reveal several critical roads with significant influence on prediction and distinct congestion patterns across spatial clusters. The outcomes offer both methodological and practical contributions to data-driven traffic modeling and urban transport planning.
URI: http://repository.ipb.ac.id/handle/123456789/169983
Appears in Collections:UT - Statistics and Data Sciences

Files in This Item:
File Description SizeFormat 
cover_G1401211077_f7db3bb65f1049f0850f0b94379c39bb.pdfCover588.62 kBAdobe PDFView/Open
fulltext_G1401211077_759aa7afe5294792b812efec8bf633de.pdf
  Restricted Access
Fulltext2.03 MBAdobe PDFView/Open
lampiran_G1401211077_7e0daea7c82f4bc6877c731975504333.pdf
  Restricted Access
Lampiran1.27 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.