Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/169925| Title: | Evaluasi Kinerja Prediksi Nilai Tukar Rupiah terhadap Yen Menggunakan Modifikasi Visibility Graph |
| Other Titles: | Performance Evaluation of Rupiah to Yen Exchange Rate Prediction Using a Modified Visibility Graph |
| Authors: | Septyanto, Fendy Mangku, I Wayan Aprizky, Muhammad Ridwan |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Penelitian ini memodelkan dan memprediksi pergerakan kurs jual rupiah
terhadap yen menggunakan pendekatan visibility graph berbasis kemiripan. Metode
visibility graph memetakan data time series menjadi graf tak berarah, dimana
keterhubungan antar titik ditentukan berdasarkan visibilitas antar titik. Penelitian
ini menggunakan data harian kurs IDR/JPY periode 1 Januari hingga 30 April 2024.
Proses analisis dilakukan dengan membentuk visibility graph, menghitung matriks
peluang transisi dan nilai kemiripan menggunakan local random walk, serta
melakukan prediksi dengan tiga pendekatan: initial forecasting, amandatory
forecasting dan modified amandatory forecasting. Evaluasi keakuratan dilakukan
dengan indikator MAPE. Hasil penelitian menunjukkan bahwa amandatory
forecasting memberikan hasil paling akurat dengan MAPE sebesar 0.792% yang
lebih rendah dibanding kedua metode lainnya (0.939% dan 0.917%). Dengan
demikian pendekatan visibility graph berbasis kemiripan terbukti efektif dalam
memprediksi pergerakan kurs. This study models and predict the movement of the rupiah selling exchange rate against the japanese yen using a similarity-based visibility graph approach. The visibility graph method transforms time series data into an undirected graph, where connections between nodes are determined based on their visibility. The study utilizes daily IDR/JPY exchange rate data from Januari 1 to April 30,2024. The analitycal process includes constructing the visibility graph, calculating the transition probability matrix and similarity values using local random walk, and performing predictions using three methods: initial forecasting, amandatory forecasting, and modified amandatory forecasting. The accuracy of each method is evaluated using the Mean Abosulte Percentage Error (MAPE). The result show that amandatory forecasting yields the most accurate prediction with a MAPE of 0.792%) which is lower than the other two methods (0.939% and 0.917%). Therefore, the similarity-based visibility graph approach proves to be effective in forecasting exchange rate movements. |
| URI: | http://repository.ipb.ac.id/handle/123456789/169925 |
| Appears in Collections: | UT - Actuaria |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G5402201077_9a9afb3658ce4fc181dde89289109f0d.pdf | Cover | 427.24 kB | Adobe PDF | View/Open |
| fulltext_G5402201077_67ac72500d5244f6aa2c8cd9c242ffe0.pdf Restricted Access | Fulltext | 2.25 MB | Adobe PDF | View/Open |
| lampiran_G5402201077_d82db2f88cc94b0c9b39933009764146.pdf Restricted Access | Lampiran | 186.78 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.