Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/169702
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorIndahwati-
dc.contributor.advisorAfendi, Farit Mochamad-
dc.contributor.authorKireinahana, Kaylila-
dc.date.accessioned2025-08-16T21:25:40Z-
dc.date.available2025-08-16T21:25:40Z-
dc.date.issued2025-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/169702-
dc.description.abstractSurvival analysis is crucial in medical research to model the time until an event occurs, such as death or recovery. The Cox Proportional Hazards (Cox PH) model is widely used; however, it depends on the proportional hazards (PH) assumption, which is often violated in practice, especially when the effect of a covariate changes over time. The stratified Cox model and the extended Cox model are two approaches frequently used to address violations of the PH assumption. In this study, the performance of the two models were compared. This study also evaluated the effect of sample size variations on model robustness and the ability to detect violations of the PH assumption. Model stability and the PH assumption test using Schoenfeld residuals were evaluated through repeated stratified sampling. Based on data from 4024 breast cancer cases in women collected by the National Cancer Institute (NCI) from 2006–2010, violations of the assumption were found in two binary variables, such as estrogen and progesterone receptor status. The extended Cox model with the Heaviside time function performed best, with a C-index of 0,741 and an AIC of 9373,679. Repeated sampling results showed that small sample sizes produced unnaturally high C-index values and masked assumption violations. In contrast, larger sample sizes provided more stable estimates and violation detection. These results highlighted the importance of testing model assumptions and selecting an appropriate survival model, particularly for data sets with limited size and unbalanced proportions.-
dc.description.abstractAnalisis daya tahan (survival analysis) krusial dalam penelitian medis untuk memodelkan waktu hingga suatu peristiwa terjadi, seperti kematian atau kesembuhan. Model Cox Proportional Hazards (Cox PH) merupakan model yang sering digunakan, namun model tersebut bergantung pada asumsi proportional hazards (PH) yang dalam praktiknya kerap dilanggar, terutama ketika efek kovariat berubah terhadap waktu. Model Cox stratifikasi dan model extended Cox merupakan dua pendekatan yang sering digunakan untuk mengatasi pelanggaran asumsi PH. Dalam peneltian ini performa kedua model akan dibandingkan. Studi ini juga mengevaluasi pengaruh variasi ukuran sampel terhadap ketahanan model dan kemampuan dalam mendeteksi pelanggaran asumsi PH. Kestabilan model dan uji asumsi PH melalui sisaan Schoenfeld dievaluasi melalui stratified sampling berulang. Berdasarkan 4024 data kasus kanker payudara pada perempuan yang dikumpulkan oleh National Cancer Institute (NCI) periode 2006–2010, ditemukan pelanggaran asumsi pada dua peubah biner, yaitu status reseptor estrogen dan progesteron. Model extended Cox dengan fungsi waktu Heaviside menunjukkan hasil terbaik, dengan nilai C-index 0,741 dan AIC 9373,679. Hasil pengambilan sampel berulang menunjukkan bahwa ukuran sampel yang kecil cenderung menghasilkan nilai C-index yang lebih tinggi secara tidak wajar dan menyamarkan pelanggaran asumsi, sementara ukuran sampel yang lebih besar memberikan estimasi yang lebih stabil dan kemampuan deteksi atas pelanggaran. Hasil ini menekankan pentingnya pengujian asumsi model dan pemilihan model survival yang tepat, khususnya pada gugus data dengan ukuran terbatas dan proporsi yang tidak seimbang.-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titleEvaluation of Cox Regression Performance on Violation of Proportional Hazards Assumption Using Repeated Sampling on Breast Cancer Casesid
dc.title.alternativeEvaluasi Kinerja Regresi Cox Terhadap Pelanggaran Asumsi Proportional Hazards dengan Sampling Berulang pada Kasus Kanker Payudara-
dc.typeSkripsi-
dc.subject.keywordcox propotional hazardid
dc.subject.keywordextended coxid
dc.subject.keywordproportional hazard assumptionid
dc.subject.keywordrepeated samplingid
dc.subject.keywordstratified coxid
Appears in Collections:UT - Statistics and Data Sciences

Files in This Item:
File Description SizeFormat 
cover_G1401211070_027d90380a804893850f650252190a7b.pdfCover371.83 kBAdobe PDFView/Open
fulltext_G1401211070_4ccef5a35bb346ca80f0aa8dfcb75c58.pdf
  Restricted Access
Fulltext1.85 MBAdobe PDFView/Open
lampiran_G1401211070_70786e70b2f84b55afd48686d042308b.pdf
  Restricted Access
Lampiran1.81 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.