Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/169652
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMindara, Gema Parasti-
dc.contributor.authorSuhaila, Dhia-
dc.date.accessioned2025-08-16T04:26:16Z-
dc.date.available2025-08-16T04:26:16Z-
dc.date.issued2025-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/169652-
dc.description.abstractGas bumi merupakan sumber daya alam strategis yang berperan penting dalam memenuhi kebutuhan energi di sektor industri, komersial, dan rumah tangga. Namun, distribusinya belum sepenuhnya merata, terutama bagi konsumen skala kecil. Untuk mengatasi permasalahan tersebut, digunakan teknologi smart meter berbasis Internet of Things (IoT) yang mampu mengukur dan mengirimkan data konsumsi energi secara berkala. Pada generasi sebelumnya perangkat belum memiliki kemampuan untuk memantau umur pakai baterai secara otomatis, sehingga menyulitkan proses pemeliharaan. Kemudian dilakukan penelitian untuk memprediksi umur pakai baterai lithium-ion 18650 dengan pendekatan machine learning. Dua algoritma regresi diterapkan, yaitu Random Forest Regressor dan Regresi Linier, yang dibandingkan berdasarkan tingkat akurasi prediksi. Hasil evaluasi model Random Forest Regressor menunujukkan bahwa nilai Mean Absolute Error (MAE) sebesar 0,6535, Mean Squared Error (MSE) sebesar 0,9887, dan Root Mean Squared Error (RMSE) sebesar 0,9943 yang kemudian diimplementasikan pada sistem smart meter gas.-
dc.description.abstractNatural gas is a strategic natural resource that plays an important role in meeting energy needs in the industrial, commercial, and household sectors. However, its distribution is not yet fully equitable, especially for small-scale consumers. To address this issue, Internet of Things (IoT)-based smart meter technology is used to measure and transmit energy consumption data on a regular basis. In previous generations, devices lacked the ability to automatically monitor battery lifespan, complicating maintenance processes. A study was conducted to predict the lifespan of 18650 lithium-ion batteries using a machine learning approach. Two regression algorithms were applied: Random Forest Regressor and Linear Regression, which were compared based on prediction accuracy. The evaluation results of the Random Forest Regressor model showed a Mean Absolute Error (MAE) of 0.6535, a Mean Squared Error (MSE) of 0.9887, and a Root Mean Squared Error (RMSE) of 0.9943, which were then implemented in the gas smart meter system.-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titlePrediksi Umur Pakai Baterai dengan Model Random Forest Regressor pada Penggunaan Smart Meter Gasid
dc.title.alternativePredicting Battery Life Using a Random Forest Regressor Model in Gas Smart Meter Applications-
dc.typeTugas Akhir-
dc.subject.keyword18650 lithium-ion batteryid
dc.subject.keywordLinear Regressionid
dc.subject.keywordMachine Learningid
dc.subject.keywordPrediction of service lifeid
dc.subject.keywordRandom Forest Regressorid
dc.subject.keywordSmart Meterid
Appears in Collections:UT - Computer Engineering Tehcnology

Files in This Item:
File Description SizeFormat 
cover_J0304211164_4832c04ced1b472c95434666339ec323.pdfCover797.28 kBAdobe PDFView/Open
fulltext_J0304211164_afd9bc0d410f4b5cb25bd997f5ea1691.pdf
  Restricted Access
Fulltext3.13 MBAdobe PDFView/Open
lampiran_J0304211164_9e2c545af8d443b2a0f16205109a55b7.pdf
  Restricted Access
Lampiran617.54 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.