Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/169627| Title: | Penerapan Sistem IoT untuk Deteksi Kerusakan Motor 3 Fasa dengan Monitoring Kecepatan Getaran dan Kontrol Berbasis HMI |
| Other Titles: | Implementation of an IoT System for Detecting Faults in Three-Phase Motors through Vibration Monitoring and HMI-Based Control |
| Authors: | Setiawan, Aep Tondang, Daffa Adrian Ahmadi |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Penelitian ini membahas pengembangan sistem Internet of Things (IoT) untuk deteksi dini kerusakan motor konveyor melalui pemantauan getaran dan suhu secara real-time. Sistem ini memanfaatkan sensor RS-WZ3/WZ1-N01-1 temperature vibration transmitter yang terhubung dengan Programmable Logic Controller (PLC) Mitsubishi Q-Series, serta Human Machine Interface (HMI) GOT2000 sebagai media visualisasi. Data dari sensor dikirim melalui protokol Modbus RTU untuk ditampilkan dan dianalisis, sehingga memungkinkan operator memantau kondisi motor secara langsung. Metode klasifikasi kondisi dibagi menjadi tiga kategori: Normal, Warning, dan Danger, berdasarkan ambang batas nilai getaran yang diacu dari standar penelitian sebelumnya. Hasil pengujian menunjukkan sistem mampu menampilkan data dengan akurasi tinggi dan memberikan peringatan dini ketika terjadi anomali. Sistem ini diharapkan dapat membantu meningkatkan keandalan operasi dan mengurangi risiko downtime pada industri berbasis konveyor. This study presents the development of an Internet of Things (IoT)-based system for early fault detection in conveyor motors through real-time vibration and temperature monitoring. The system employs the RS-WZ3/WZ1-N01-1 temperature vibration transmitter connected to a Mitsubishi Q-Series Programmable Logic Controller (PLC) and a GOT2000 Human Machine Interface (HMI) for visualization. Sensor data are transmitted via the Modbus RTU protocol for display and analysis, enabling operators to monitor motor conditions in real time. Condition classification is divided into three categories: Normal, Warning, and Danger, based on vibration thresholds adapted from previous research standards. Test results indicate that the system accurately displays data and provides early warnings when anomalies occur. This system is expected to enhance operational reliability and reduce downtime risks in conveyor-based industries. |
| URI: | http://repository.ipb.ac.id/handle/123456789/169627 |
| Appears in Collections: | UT - Computer Engineering Tehcnology |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_J0304211069_6982f462ac51484e9c5135b869e612f4.pdf | Cover | 490.16 kB | Adobe PDF | View/Open |
| fulltext_J0304211069_420f6b43e1254e13bd596ad43a4415d4.pdf Restricted Access | Fulltext | 1.51 MB | Adobe PDF | View/Open |
| lampiran_J0304211069_1fecc1e80ffe4449a3f0f23ea0e215d6.pdf Restricted Access | Lampiran | 266.06 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.