Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/169399
Title: Analisis Kinerja Adaptive Data Rate (ADR) dalam Meningkatkan Keandalan Transmisi dan Efisiensi Daya pada Jaringan LoRaWAN
Other Titles: Adaptive Data Rate (ADR) Performance Analysis in Improving Transmission Reliability and Power Efficiency in LoRaWAN Networks
Authors: Sukoco, Heru
Wijaya, Sony Hartono
HAKIM, MUHAMMAD LUQMAN
Issue Date: 2025
Publisher: IPB University
Abstract: LoRaWAN adalah protokol jaringan berdaya rendah dengan jangkauan luas sehingga ideal untuk aplikasi IoT di sektor pertanian. Salah satu fitur utama LoRaWAN adalah Adaptive Data Rate (ADR), yang menyesuaikan kecepatan data dan daya pancar untuk meningkatkan efisiensi transmisi. Penelitian ini menganalisis berbagai implementasi ADR dengan simulator FLoRa berbasis OMNeT++. Aspek yang diuji pada penelitian ini adalah data extraction rate (DER) dan network energy consumption (NEC). Skenario penelitian menggunakan kombinasi lingkungan urban/suburban dan variabilitas ideal/tipikal. Hasil penelitian menunjukkan algoritma ADR default memberikan keandalan transmisi yang tidak memuaskan terutama pada skenario dengan variabilitas tipikal. Pada penelitian ini penulis mengajukan algoritma ADR berbasis reinforcement learning yaitu dengan Q-Learning. Pendekatan Q-Learning memberikan hasil DER dan NEC yang lebih baik dari algoritma default ADR di setiap skenario yang diuji.
LoRaWAN is a low-power wide-area network protocol that is ideal for IoT applications in the agricultural sector. One of the key features of LoRaWAN is Adaptive Data Rate (ADR), which adjusts data rate and transmission power to improve transmission efficiency. This study analyzes various ADR implementations using the FLoRa simulator based on OMNeT++. The aspects evaluated in this research are the Data Extraction Rate (DER) and Network Energy Consumption (NEC). The simulation scenarios combine urban/suburban environments with ideal/typical variability. The results show that the default ADR algorithm provides unsatisfactory transmission reliability, especially in scenarios with typical variability. This study proposes a reinforcement learning-based ADR algorithm using Q-Learning. The Q-Learning approach yields better DER and NEC performance than the default ADR algorithm across all tested scenarios.
URI: http://repository.ipb.ac.id/handle/123456789/169399
Appears in Collections:UT - Computer Science

Files in This Item:
File Description SizeFormat 
cover_G6401211094_369846058fea44509cbb127f89789f41.pdfCover374.31 kBAdobe PDFView/Open
fulltext_G6401211094_e5c68fbd19a94aa1829f519f5568ce65.pdf
  Restricted Access
Fulltext933.24 kBAdobe PDFView/Open
lampiran_G6401211094_25b1baec2c964ec58bbc47bde99c6c1c.pdf
  Restricted Access
Lampiran261.63 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.