Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/169307| Title: | Perbandingan Model Var Dan Var-Lstm Dalam Memprediksi Kedatangan Wisatawan Di Bandara Ngurah Rai Dan Nilai Tukar Dolar |
| Other Titles: | |
| Authors: | Angraini, Yenni Indahwati Zafira, Gladys Adya |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Pariwisata memegang peranan penting dalam perekonomian Indonesia dan
memberikan kontribusi signifikan terhadap pembangunan nasional. Bandara
Ngurah Rai di Bali berperan sebagai pintu gerbang utama bagi kedatangan
wisatawan mancanegara di Indonesia. Fluktuasi nilai tukar rupiah terhadap dolar
Amerika Serikat (AS) merupakan salah satu faktor yang memengaruhi jumlah
kunjungan wisatawan. Dalam analisis deret waktu, model Vector Autoregressive
(VAR) digunakan untuk menganalisis hubungan dinamis antarpeubah deret waktu
dengan mempertimbangkan pengaruh nilai masa lalu dari masing-masing peubah
maupun peubah lainnya. Sementara itu, model Long Short-Term Memory (LSTM)
diterapkan untuk mengatasi pola nonlinier pada data yang bersifat fluktuatif. Dalam
upaya meningkatkan akurasi peramalan, metode sliding window cross validation
diterapkan pada kedua model dengan tujuan menentukan lag optimal pada VAR
dan hyperparameter tuning pada LSTM melalui grid search. Integrasi kedua
pendekatan ini dalam model hybrid VAR-LSTM memungkinkan analisis pola data
yang lebih komprehensif. Hasil penelitian menunjukkan bahwa model hybrid VAR
LSTM memberikan akurasi peramalan yang lebih baik dibandingkan model VAR,
dengan nilai Mean Absolute Percentage Error (MAPE) sebesar 0,20% untuk nilai
tukar IDR/USD dan 7,36% untuk jumlah wisatawan mancanegara di Bali. Tourism plays a vital role in Indonesia’s economy, significantly contributing to national development. The International Ngurah Rai Airport in Bali serves as a key gateway for international tourist arrivals. Fluctuations in the Indonesian Rupiah (IDR) exchange rate against the United States Dollar (USD) are among the factors influencing the volume of tourist visits. In time series analysis, the Vector Autoregressive (VAR) model captures dynamic relationships among multiple variables by modeling each as a function of its own lagged values and those of other variables. In addition, the Long Short-Term Memory (LSTM) model is used to identify nonlinear patterns in highly volatile data. This study applied sliding window cross-validation to both models to enhance forecasting performance. In the VAR model, it was used to determine the optimal lag length, while in the LSTM model, it was combined with grid search for hyperparameter tuning. The integration of these approaches into the hybrid VAR-LSTM model enabled a more comprehensive analysis of temporal patterns. The results indicated that the hybrid VAR-LSTM model significantly improved forecasting accuracy compared to the traditional VAR model, achieving Mean Absolute Percentage Error (MAPE) values of 0.20% for the IDR/USD exchange rate and 7.36% for international tourist arrivals in Bali. |
| URI: | http://repository.ipb.ac.id/handle/123456789/169307 |
| Appears in Collections: | UT - Statistics and Data Sciences |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G1401211014_7ab1c87ba3c14cb3863eee9444b158be.pdf | Cover | 8.66 MB | Adobe PDF | View/Open |
| fulltext_G1401211014_5110d8815561427cbcf32207509dd359.pdf Restricted Access | Fulltext | 8.73 MB | Adobe PDF | View/Open |
| lampiran_G1401211014_ead87433e8f24f8c90ebf365c01668a4.pdf Restricted Access | Lampiran | 8.65 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.