Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/169307
Title: Perbandingan Model Var Dan Var-Lstm Dalam Memprediksi Kedatangan Wisatawan Di Bandara Ngurah Rai Dan Nilai Tukar Dolar
Other Titles: 
Authors: Angraini, Yenni
Indahwati
Zafira, Gladys Adya
Issue Date: 2025
Publisher: IPB University
Abstract: Pariwisata memegang peranan penting dalam perekonomian Indonesia dan memberikan kontribusi signifikan terhadap pembangunan nasional. Bandara Ngurah Rai di Bali berperan sebagai pintu gerbang utama bagi kedatangan wisatawan mancanegara di Indonesia. Fluktuasi nilai tukar rupiah terhadap dolar Amerika Serikat (AS) merupakan salah satu faktor yang memengaruhi jumlah kunjungan wisatawan. Dalam analisis deret waktu, model Vector Autoregressive (VAR) digunakan untuk menganalisis hubungan dinamis antarpeubah deret waktu dengan mempertimbangkan pengaruh nilai masa lalu dari masing-masing peubah maupun peubah lainnya. Sementara itu, model Long Short-Term Memory (LSTM) diterapkan untuk mengatasi pola nonlinier pada data yang bersifat fluktuatif. Dalam upaya meningkatkan akurasi peramalan, metode sliding window cross validation diterapkan pada kedua model dengan tujuan menentukan lag optimal pada VAR dan hyperparameter tuning pada LSTM melalui grid search. Integrasi kedua pendekatan ini dalam model hybrid VAR-LSTM memungkinkan analisis pola data yang lebih komprehensif. Hasil penelitian menunjukkan bahwa model hybrid VAR LSTM memberikan akurasi peramalan yang lebih baik dibandingkan model VAR, dengan nilai Mean Absolute Percentage Error (MAPE) sebesar 0,20% untuk nilai tukar IDR/USD dan 7,36% untuk jumlah wisatawan mancanegara di Bali.
Tourism plays a vital role in Indonesia’s economy, significantly contributing to national development. The International Ngurah Rai Airport in Bali serves as a key gateway for international tourist arrivals. Fluctuations in the Indonesian Rupiah (IDR) exchange rate against the United States Dollar (USD) are among the factors influencing the volume of tourist visits. In time series analysis, the Vector Autoregressive (VAR) model captures dynamic relationships among multiple variables by modeling each as a function of its own lagged values and those of other variables. In addition, the Long Short-Term Memory (LSTM) model is used to identify nonlinear patterns in highly volatile data. This study applied sliding window cross-validation to both models to enhance forecasting performance. In the VAR model, it was used to determine the optimal lag length, while in the LSTM model, it was combined with grid search for hyperparameter tuning. The integration of these approaches into the hybrid VAR-LSTM model enabled a more comprehensive analysis of temporal patterns. The results indicated that the hybrid VAR-LSTM model significantly improved forecasting accuracy compared to the traditional VAR model, achieving Mean Absolute Percentage Error (MAPE) values of 0.20% for the IDR/USD exchange rate and 7.36% for international tourist arrivals in Bali.
URI: http://repository.ipb.ac.id/handle/123456789/169307
Appears in Collections:UT - Statistics and Data Sciences

Files in This Item:
File Description SizeFormat 
cover_G1401211014_7ab1c87ba3c14cb3863eee9444b158be.pdfCover8.66 MBAdobe PDFView/Open
fulltext_G1401211014_5110d8815561427cbcf32207509dd359.pdf
  Restricted Access
Fulltext8.73 MBAdobe PDFView/Open
lampiran_G1401211014_ead87433e8f24f8c90ebf365c01668a4.pdf
  Restricted Access
Lampiran8.65 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.