Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/169182
Title: Pemodelan Distribusi Aliran Udara Guna Meningkatkan Kenyamanan Termal Pekerja di Ruang Boiler Cangkang Kelapa Sawit
Other Titles: Modeling Airflow Distribution to Improve Thermal Comfort for Workers in Palm Shell Boiler Rooms
Authors: Sulistijorini
Marlina, Dede
Issue Date: 2025
Publisher: IPB University
Abstract: Ruang boiler cangkang kelapa sawit merupakan area industri dengan beban panas tinggi yang berpotensi menimbulkan risiko heat stress dan menurunkan produktivitas kerja. Penelitian bertujuan untuk meningkatkan kenyamanan termal di ruang boiler melalui rekayasa ventilasi dan evaluasi berbasis pemodelan distribusi aliran udara. Metode yang digunakan mencakup pengukuran parameter fisik (suhu, kelembapan, kecepatan angin), perhitungan PMV, PPD, dan THI, serta simulasi Computational Fluid Dynamics (CFD) menggunakan perangkat lunak ANSYS Fluent. Perbaikan dilakukan dengan menambah ventilasi kisi selebar 30 m² dan tiga jalusi selebar 2,16 m², menghasilkan total luas bukaan 32,16 m². Hasil pengukuran menunjukkan nilai PMV hingga +3,9, PPD 90–100%, dan THI 30,8–33,1°C sebelum intervensi. Setelah penerapan berupa penambahan bukaan ventilasi kisi dan jalusi, simulasi menunjukkan peningkatan kecepatan aliran udara >3 m/s dan penurunan suhu >9°C di zona panas. Jalusi terbukti efektif mengurangi suhu dan kelembapan tanpa konsumsi energi listrik, serta menurunkan indeks termal. Strategi ini memberikan solusi praktis dan efisien untuk meningkatkan kenyamanan kerja di ruang industri bersuhu tinggi seperti ruang boiler cangkang kelapa sawit.
The boiler room is an industrial area with high heat loads that can potentially cause heat stress and reduce work productivity. The study aims to improve thermal comfort in the boiler room through ventilation engineering and evaluation based on airflow distribution modeling. The methods used include measuring physical parameters (temperature, humidity, wind speed), calculating PMV, PPD, and THI, and conducting Computational Fluid Dynamics (CFD) simulations using ANSYS Fluent software. Improvements were made by adding a 30 m² grille ventilation and three 2,16 m² louvers, resulting in a total opening area of 32,16 m². Measurement results showed PMV values up to +3,9, PPD 90–100%, and THI 30,8–33,1°C before intervention. After implementing the addition of ventilation grilles and louvers, simulations showed an increase in airflow velocity >3 m/s and a temperature decrease >9°C in the hot zone. Louvers were proven effective in reducing temperature and humidity without electricity consumption, as well as lowering the thermal index. This strategy provides a practical and efficient solution to improve workplace comfort in high-temperature industrial spaces such as shell boiler rooms.
URI: http://repository.ipb.ac.id/handle/123456789/169182
Appears in Collections:UT - Environmental Engineering and Management

Files in This Item:
File Description SizeFormat 
cover_J0313211110_6212a16f026c48619421262a75c63cf8.pdfCover6.27 MBAdobe PDFView/Open
fulltext_J0313211110_c7e3e7cccf4e478d95c79947f06b4354.pdf
  Restricted Access
Fulltext2.35 MBAdobe PDFView/Open
lampiran_J0313211110_2f33c045935248abae1d00a551d781f2.pdf
  Restricted Access
Lampiran6.26 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.