Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/169161Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | Sitanggang, Imas Sukaesih | - |
| dc.contributor.advisor | Rahmawan, Hendra | - |
| dc.contributor.author | Hesang, Steven | - |
| dc.date.accessioned | 2025-08-14T05:41:46Z | - |
| dc.date.available | 2025-08-14T05:41:46Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/169161 | - |
| dc.description.abstract | Peningkatan polusi udara di Jakarta, khususnya konsentrasi PM2.5, menjadi perhatian utama karena dampaknya terhadap kesehatan masyarakat. Menurut Kementerian Kesehatan, Daerah Jakarta tercatat terdapat 638.291 kasus dari Januari hingga Juni 2023. Penelitian ini bertujuan membangun model prediksi konsentrasi PM2.5 menggunakan data Aerosol Optical Depth (AOD) dari satelit Himawari dan model Long Short-Term Memory (LSTM) dalam rentang waktu data 1 Januari 2022 hingga 31 Desember 2024 dengan resolusi spasial 5,5 km. Data pendukung meliputi AOD satelit Himawari, PM2.5 dari situs Rendah Emisi Jakarta, serta variabel cuaca dari Visual Crossing. Setelah ketiga data digabungkan, data dipraproses menggunakan metode interpolasi linear dan dinormalisasi dengan metode MinMaxScaler, kemudian dilakukan pembagian data menjadi tiga bagian, yaitu data latih, data validasi, dan data uji. Hyperparameter tuning menggunakan grid search dengan parameter learning rate, optimizer, jumlah unit LSTM, dan dropout rate, serta evaluasi menggunakan R², MSE, dan MAE. Hasil terbaik diperoleh di stasiun DKI2 Kelapa Gading dengan R² sebesar 77,74%, RMSE 0,0875, dan MAE 0,0638 dengan parameter optimalnya 0.01 learning rate, Adam optimizer, 16 unit LSTM, dan 0 dropout rate. Model pada stasiun Jakarta GBK memiliki performa kurang baik akibat banyaknya missing value. Penelitian ini menunjukkan bahwa LSTM efektif dalam memprediksi PM2.5 jika data berkualitas tersedia. | - |
| dc.description.abstract | The increasing air pollution in Jakarta, particularly PM2.5 concentrations, has become a major concern due to its impact on public health. There is 638,291 cases recorded from January to June 2023 according to the Ministry of Health. This research aims to develop a model for predicting PM2.5 concentrations using Himawari satellite Aerosol Optical Depth (AOD) data and a Long Short-Term Memory (LSTM) model in the period of January 1, 2022, to December 31, 2024, with a spatial resolution of 5.5 km. Supporting data includes AOD from Himawari satellite, PM2.5 from the Jakarta Rendah Emisi website, and weather variables from Visual Crossing. After merging the datasets, preprocessing was conducted using linear interpolation and MinMaxScaler normalization, followed by data splitting, hyperparameter tuning using grid search on learning rate, optimizer, number of LSTM units, and dropout rate, and evaluation using R², MSE, and MAE. The best results were obtained at the DKI2 Kelapa Gading station, with an R² of 77.74%, an RMSE of 0.0875, and an MAE of 0.0638, using optimal parameters of a 0.01 learning rate, Adam optimizer, 16 LSTM units, and a dropout rate of 0. The model at the Jakarta GBK station performed less optimally due to a significant number of missing values. This research demonstrates that LSTM is effective in predicting PM2.5 when quality data is available. | - |
| dc.description.sponsorship | null | - |
| dc.language.iso | id | - |
| dc.publisher | IPB University | id |
| dc.title | Model Prediksi Konsentrasi PM2.5 di Jakarta Menggunakan LSTM Berdasarkan Data AOD Himawari | id |
| dc.title.alternative | Prediction Model for PM2.5 Concentration in Jakarta Using LSTM Based on Himawari AOD Data | - |
| dc.type | Skripsi | - |
| dc.subject.keyword | AOD | id |
| dc.subject.keyword | Himawari | id |
| dc.subject.keyword | Jakarta | id |
| dc.subject.keyword | LSTM | id |
| dc.subject.keyword | PM2.5 | id |
| Appears in Collections: | UT - Computer Science | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G6401211044_baf8fee6edc64e1cb8d7bbffc577fa86.pdf | Cover | 5.16 MB | Adobe PDF | View/Open |
| fulltext_G6401211044_988ee79aa63f45d7a6028f580a0149f0.pdf Restricted Access | Fulltext | 5.17 MB | Adobe PDF | View/Open |
| lampiran_G6401211044_0ff71034b4614ac38f6fc346bb081a66.pdf Restricted Access | Lampiran | 836.2 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.