Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/169100
Title: Implementasi Sistem Prediksi Laporan Sampah dan Banjir di Jakarta dengan Metode Holt-Winters Berbasis Website
Other Titles: Implementation of a Web-Based Waste and Flood Report Prediction System in Jakarta Using the Holt-Winters Method
Authors: Fathonah, Lathifunnisa
UMMAH, KHAERA
Issue Date: 2025
Publisher: IPB University
Abstract: Masalah pengelolaan sampah dan banjir di DKI Jakarta memerlukan sistem prediksi yang efektif untuk meningkatkan kecepatan respons dari rata-rata sembilan hari menjadi lebih singkat. Penelitian ini mengembangkan sistem prediksi laporan sampah dan banjir berbasis website menggunakan metode Holt-Winters Exponential Smoothing dengan pendekatan Prototype. Data historis laporan periode 2019-2024 dianalisis untuk memprediksi jumlah laporan tahun 2025. Hasil penelitian menunjukkan rata-rata tingkat akurasi prediksi 30,44% untuk laporan sampah dan 30,95 untuk laporan banjir. Analisis data mengungkapkan tidak terdapat hubungan langsung antara laporan sampah dengan kejadian banjir. Sistem berhasil menyediakan dashboard interaktif untuk visualisasi prediksi dan pemetaan titik rawan banjir yang mendukung pengambilan keputusan dan alokasi sumber daya yang lebih efektif.
Waste and flood management problems in DKI Jakarta require an effective prediction system to improve response time from an average of nine days to shorter periods. This study develops a website-based waste and flood report prediction system using the Holt-Winters Exponential Smoothing method with a Prototype approach. Historical report data from 2019 to 2024 were analyzed to predict the number of reports in 2025. The results show an average prediction accuracy rate of 30,44% for waste reports and 30,95 for flood reports. Data analysis reveals no direct relationship between waste reports and flood incidents. The system successfully provides an interactive dashboard for prediction visualization and flood-prone area mapping that supports more effective decision-making and resource allocation.
URI: http://repository.ipb.ac.id/handle/123456789/169100
Appears in Collections:UT - Software Engineering Technology

Files in This Item:
File Description SizeFormat 
cover_J0303211127_322e2a31b97044c5940c4136596ed643.pdfCover415.92 kBAdobe PDFView/Open
fulltext_J0303211127_a85f890c4a024544bf9edfd95a1d3350.pdf
  Restricted Access
Fulltext1.71 MBAdobe PDFView/Open
lampiran_J0303211127_1aef3835a6514b58bd03cdfaa20b38ca.pdf
  Restricted Access
Lampiran1.25 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.