Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/168969| Title: | Sistem Informasi Re-Actions pada Fitur Sentimen Data Aduan Publik dan Reporting |
| Other Titles: | Re-actions Information System for Public Complaint Data Sentiment Analysis and Reporting Features |
| Authors: | Renanti, Medhanita Dewi BAGASKARA, MUHAMMAD FATIH |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Sistem pengelolaan aduan publik yang efektif menjadi kunci dalam meningkatkan transparansi dan responsivitas pemerintahan. Penelitian ini bertujuan untuk mengembangkan sistem informasi berbasis web bernama Re-Actions yang dilengkapi fitur analisis sentimen dan pelaporan otomatis terhadap data aduan masyarakat. Metode pengembangan yang digunakan adalah Scrum, sedangkan pembuatan model analisis sentimen dilakukan dengan pendekatan machine learning menggunakan algoritma Support Vector Machine. Hasil pengujian menunjukkan bahwa model mencapai akurasi sebesar 79% yang mengindikasikan performa klasifikasi yang cukup baik. Sistem juga diuji melalui Black-box Testing dan User Acceptance Testing (UAT), di mana seluruh fungsi utama berjalan sesuai harapan dan memperoleh tingkat kepuasan pengguna sebesar 92%. Temuan ini membuktikan bahwa integrasi machine learning dalam sistem informasi aduan publik dapat meningkatkan efektivitas proses pengambilan keputusan dan pelayanan masyarakat di Kota Tangerang. An effective public complaint management system is key to enhancing governmental transparency and responsiveness. This study aims to develop a webbased information system called Re-Actions, equipped with sentiment analysis and automated reporting features for public complaint data. The development method used is Scrum, while the sentiment analysis model was built using a machine learning approach with the Support Vector Machine algorithm. The evaluation results show that the model achieved an accuracy of 79%, indicating a fairly good classification performance. The system was also tested through Black-box Testing and User Acceptance Testing (UAT), where all main functions operated as expected and received a user satisfaction level of 92%. These findings demonstrate that the integration of machine learning into public complaint information systems can enhance the effectiveness of decision-making processes and public service delivery in Tangerang City. |
| URI: | http://repository.ipb.ac.id/handle/123456789/168969 |
| Appears in Collections: | UT - Software Engineering Technology |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_J0303211092_4783e1a37ee24f689af98acef8ac31bc.pdf | Cover | 1.72 MB | Adobe PDF | View/Open |
| fulltext_J0303211092_7e3ce3b889e240c3a1c37e6081c2c13d.pdf Restricted Access | Fulltext | 1.72 MB | Adobe PDF | View/Open |
| lampiran_J0303211092_573dd386cfef4faab8e5deb1ebeccd84.pdf Restricted Access | Lampiran | 657.82 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.