Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/168952Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | Rahmawan, Hendra | - |
| dc.contributor.author | Permana, Silva Dimas Surya | - |
| dc.date.accessioned | 2025-08-13T06:25:13Z | - |
| dc.date.available | 2025-08-13T06:25:13Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/168952 | - |
| dc.description.abstract | Kebisingan di lingkungan kerja merupakan faktor risiko yang kerap diabaikan, padahal dapat mengganggu kenyamanan, konsentrasi, hingga kesehatan pekerja. PT Waindo Specterra belum memiliki sistem monitoring kebisingan otomatis, meskipun terdapat area aktivitas padat yang berpotensi melampaui ambang batas 85 dB sesuai Permenaker No.5 Tahun 2018. Penelitian ini bertujuan untuk mengembangkan Sistem Monitoring Kebisingan berbasis Internet of Things (IoT) dengan menggunakan sensor suara MAX4466 dan mikrokontroler ESP32. Sistem dirancang agar mampu menampilkan data secara realtime, mengirimkan notifikasi melalui aplikasi Blynk, mencatat data otomatis ke Google Spreadsheet, dan menyimpan data cadangan melalui MicroSD. Metode pelaksanaan meliputi observasi lingkungan kerja, analisis kebutuhan, perancangan sistem, implementasi, pengujian, dan analisis data. Evaluasi dilakukan dengan membandingkan hasil pengukuran sistem terhadap alat ukur kebisingan konvensional. Hasil menunjukkan bahwa sistem dapat mendeteksi kebisingan secara real-time dan mencatat data dengan format yang terstruktur. Rentang error absolut berada pada 1,80–1,84 dB, sedangkan error relatif berkisar 2,92%– 3,05%. Penerapan model koreksi regresi linear berhasil meningkatkan akurasi secara signifikan, dengan menurunkan rentang error absolut menjadi 0,49–0,79 dB dan error relatif menjadi 0,83%–1,40%. Sistem ini dapat dimanfaatkan sebagai alat bantu awal bagi divisi HSE (Healthy, Safety, Environment) dalam kegiatan pemantauan kebisingan kerja. | - |
| dc.description.abstract | Noise in the workplace is a risk factor often overlooked, despite its potential to disrupt comfort, concentration, and employee health. PT Waindo Specterra currently lacks an automatic noise detection system, even though several high-activity areas may exceed the 85 dB threshold as regulated by the Indonesian Ministry of Manpower (Regulation No. 5 of 2018). This study aims to develop a noise monitoring system based on the Internet of Things (IoT) using a MAX4466 sound sensor and ESP32 microcontroller. The system is designed to display real-time data, send alerts via the Blynk application, automatically log data to Google Spreadsheet, and store backup data on a MicroSD card. The methodology includes workplace observation, needs analysis, system design, implementation, testing, and data analysis. System evaluation was conducted by comparing measurement results with a conventional Sound Level Meter. The system successfully detects noise in real-time and records data in a structured format. The absolute error ranged from 1.80 to 1.84 dB, while the relatif error was between 2.92% and 3.05%. This system can serve as an initial tool for the Health, Safety, and Environment (HSE) division in monitoring workplace noise. | - |
| dc.description.sponsorship | null | - |
| dc.language.iso | id | - |
| dc.publisher | IPB University | id |
| dc.title | SISTEM MONITORING KEBISINGAN BERBASIS IOT DENGAN PENYIMPANAN TERINTEGRASI | id |
| dc.title.alternative | IoT-Based Noise Monitoring System with Integrated Data Storage | - |
| dc.type | Tugas Akhir | - |
| dc.subject.keyword | ESP32 | id |
| dc.subject.keyword | HSE | id |
| dc.subject.keyword | IoT | id |
| dc.subject.keyword | noise | id |
| dc.subject.keyword | MAX4466 | id |
| Appears in Collections: | UT - Computer Engineering Tehcnology | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_J0304211113_ec08e2dc6d7241249abd0223bb6b8793.pdf | Cover | 2.34 MB | Adobe PDF | View/Open |
| fulltext_J0304211113_cbeda929336e451fbba084a3259fa145.pdf Restricted Access | Fulltext | 2.34 MB | Adobe PDF | View/Open |
| lampiran_J0304211113_786e74d7e72e4647b9e8a21434e3cb1d.pdf Restricted Access | Lampiran | 1.58 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.