Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/168929
Title: Pengembangan Modul Front-end pada Sistem Spatial Online Analytical Processing untuk Analisis Titik Panas Karhutla
Other Titles: 
Authors: Sitanggang, Imas Sukaesih
Rahmawan, Hendra
SAMANTHA, NECHITA
Issue Date: 2025
Publisher: IPB University
Abstract: Kebakaran hutan dan lahan (karhutla) adalah masalah serius di Indonesia yang memerlukan pemantauan efektif. Sistem OLAP sebelumnya untuk analisis titik panas memiliki keterbatasan pada visualisasi spasial, fitur unduh data, dan antarmuka pengguna. Penelitian ini mengembangkan modul front-end pada sistem Spatial Online Analytical Processing (SOLAP) untuk mengatasi keterbatasan tersebut. Pengembangan dilakukan menggunakan metode prototyping yang meliputi tahapan komunikasi, perencanaan cepat dan pemodelan perancangan cepat, pembuatan prototipe menggunakan Next.js, TypeScript, Leaflet.js, dan Chart.js serta penyebaran, pengujian, dan umpan balik. Hasil penelitian ini berupa modul front-end yang fungsional dengan antarmuka yang modern dan interaktif dengan fitur utamanya mencakup visualisasi data titik panas pada peta, operasi analisis OLAP seperti drill-down, roll-up, slice, dan dice, serta fitur untuk unduh data. Kelebihan sistem meliputi visualisasi peta, penggunaan marker clustering untuk mengelola tampilan data yang padat, filter data yang fleksibel, pemanfaatan mekanisme caching data dengan library SWR, dan integrasi data real-time dengan API SiPongi+. Pengujian mandiri menunjukkan hasil operasi OLAP konsisten dan sesuai dengan hasil query pada data warehouse spasial. Pengujian menggunakan metode black box pada 31 skenario positif dan negatif menunjukkan semua fitur berfungsi sesuai harapan. Sistem ini diharapkan dapat mempermudah pemerintah dan masyarakat dalam memantau dan menganalisis data titik panas untuk mendukung upaya pencegahan karhutla.
Forest and land fires (karhutla) are a serious problem in Indonesia requiring effective monitoring. The previous OLAP system for hotspot analysis had limitations in spatial visualization, data download features, and user interface. This research develops a front-end module for a Spatial Online Analytical Processing (SOLAP) system to overcome these shortcomings. Development used a prototyping method, which included the stages of communication, quick plan and quick modelling design, prototype construction using Next.js, TypeScript, Leaflet.js, and Chart.js, as well as deployment, testing, and feedback. The resulting module offers a modern, interactive interface with key features such as hotspot data visualization on an interactive map, OLAP analysis operations such as drill-down, roll-up, slice, and dice, also data download feature. The advantages of the developed system include interactive map visualization integrated with OLAP operations, the use of marker clustering to manage dense data displays, flexible data filtering, data caching with SWR library and real-time data integration with the SiPongi+ API. Independent testing showed that OLAP operations in the application are consistent and accurate with queries from the spatial data warehouse. The system was also tested using the black box method across 31 positive and negative scenarios, and the results showed that all features functioned as expected. This system is expected to facilitate both government agencies and the general public in monitoring and analyzing hotspot data to support efforts in preventing forest and land fire.
URI: http://repository.ipb.ac.id/handle/123456789/168929
Appears in Collections:UT - Computer Science

Files in This Item:
File Description SizeFormat 
cover_G6401211043_1183447dc80e41969f0b76b7b75778af.pdfCover438.75 kBAdobe PDFView/Open
fulltext_G6401211043_fa4bfdf81ee44daca0cc3960ac5a16ac.pdf
  Restricted Access
Fulltext3.12 MBAdobe PDFView/Open
lampiran_G6401211043_b6bdbf7f3e34472fb7d05c45223f2be8.pdf
  Restricted Access
Lampiran1.63 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.