Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/168909
Title: Analisis Prediksi Daerah Penangkapan Ikan Cakalang Menggunakan Machine Learning di Laut Lepas Samudera Hindia Barat Sumatera
Other Titles: 
Authors: Gaol, Jonson Lumban
Agus, Syamsul Bahri
NURZEHA, RIDWAN
Issue Date: 2025
Publisher: IPB University
Abstract: Ikan cakalang (Katsuwonus pelamis) merupakan salah satu komoditas perikanan bernilai ekonomi tinggi bagi Indonesia, khususnya di wilayah Samudera Hindia Barat Sumatera. Pengelolaan sumber daya ini menghadapi tantangan akibat dinamika kondisi oseanografi yang memengaruhi distribusi spasial dan temporal ikan. Pemanfaatan teknologi machine learning menawarkan pendekatan untuk menganalisis data lingkungan dan memprediksi daerah penangkapan ikan (DPI). Penelitian ini bertujuan untuk menganalisis distribusi spasial dan temporal parameter oseanografi, mengidentifikasi faktor oseanografi yang paling berpengaruh terhadap habitat cakalang, dan mengembangkan model prediktif menggunakan machine learning untuk menghasilkan peta Habitat Suitability Index (HSI) sebagai rekomendasi DPI. Metode penelitian ini mencakup analisis data pada wilayah laut lepas Samudera Hindia Barat Sumatera. Data yang digunakan terdiri dari Suhu Permukaan Laut (SPL), klorofil-a, salinitas, dan Sea Surface Height (SSH), data logbook penangkapan ikan, serta data Vessel Monitoring System (VMS) periode Tahun 2014-2023. Aktivitas penangkapan ikan dari data VMS dideteksi menggunakan fungsi vmstofish yang dibangun dengan model machine learning. Delapan model machine learning (Support Vector Machines (SVM), Boosted Regression Trees (BRT), Random Forests (RF), Multivariate Adaptive Regression Splines (MARS), GAM, Multi-Layer Perceptron (MLP), Recursive Partitioning and Regression Trees (RPART), dan MaxEnt) digunakan untuk memodelkan habitat ikan cakalang. Data logbook dan VMS yang telah divalidasi digunakan sebagai data training dan evaluasi. Kinerja model dievaluasi menggunakan metrik Area Under the Curve (AUC), True Skill Statistic (TSS), serta analisis statistik distribusi untuk peta prediksi HSI yang dihasilkan. Hasil penelitian menunjukkan bahwa perekamanan aktivitas penangkapan ikan cakalang mengalami peningkatan signifikan sejak 2019, seiring dengan implementasi e-logbook. Fungsi vmstofish terbukti efektif mendeteksi fishing effort dari data VMS dan memiliki konsistensi tinggi dengan data logbook, menjadikannya alternatif data input yang valid. Secara umum, parameter SSH memiliki kontribusi terbesar dalam pemodelan habitat, diikuti oleh salinitas, SPL, dan chl-a. Hasil evaluasi model menunjukkan model RF, SVM, dan MARS menunjukkan performa terbaik. Analisis distribusi data logbook pada peta prediksi HSI menghasilkan kesimpulan bahwa model SVM dan MARS terbukti paling baik dalam memprediksi lokasi habitat dengan hasil distribusi yang relatif normal. Peta HSI menunjukkan bahwa habitat yang paling sesuai untuk ikan cakalang berada pada rentang 70 LS - 30 LU dan 80 BT – 100 BT, dengan puncak kesesuaian habitat terjadi pada periode Bulan April hingga Juli.
Skipjack tuna (Katsuwonus pelamis) is a fishery commodity of high economic value for Indonesia, particularly in the Western Sumatra Indian Ocean region. The management of this resource faces challenges due to dynamic oceanographic conditions that affect the spatial and temporal distribution of the fish. The use of machine learning technology offers an approach to analyze environmental data and predict potential fishing grounds (PFGs). This study aims to analyze the spatiotemporal distribution of oceanographic parameters, identify the most influential oceanographic factors on skipjack habitat, and develop a predictive model using machine learning to produce a Habitat Suitability Index (HSI) map as a recommendation for PFGs. The research method involved data analysis in the high seas of the Western Sumatra Indian Ocean. The data used included Sea Surface Temperature (SST), chlorophylla, salinity, and Sea Surface Height (SSH), as well as fishing logbook data and Vessel Monitoring System (VMS) data from the 2014-2023 period. Fishing activities from VMS data were detected using the vmstofish function, which was built with a machine learning model. Eight machine learning models (Support Vector Machines (SVM), Boosted Regression Trees (BRT), Random Forests (RF), Multivariate Adaptive Regression Splines (MARS), GAM, Multi-Layer Perceptron (MLP), Recursive Partitioning and Regression Trees (RPART), and MaxEnt) were used to model skipjack tuna habitat. Validated logbook and VMS data were used for training and evaluation. Model performance was evaluated using metrics such as Area Under the Curve (AUC), True Skill Statistic (TSS), and statistical distribution analysis for the resulting HSI prediction map. The results showed that the recording of skipjack tuna fishing activities has significantly increased since 2019, in line with the implementation of e-logbook. The vmstofish function proved effective in detecting fishing effort from VMS data and showed high consistency with logbook data, making it a valid alternative for input data. In general, the SSH parameter had the largest contribution to the habitat modeling, followed by salinity, SST, and chl-a. In the model evaluation, the RF, SVM, and MARS model demonstrated the best performance. However, based on the distribution analysis of logbook data on the predicted HSI map, the SVM and MARS models proved to be the best at predicting habitat locations with normal distribution as a result. The HSI map indicates that the most suitable habitat for skipjack tuna ocated in the range of 7°S -3°N and 80°E - 100°E, with peak habitat suitability occurring from April to July.
URI: http://repository.ipb.ac.id/handle/123456789/168909
Appears in Collections:MT - Fisheries

Files in This Item:
File Description SizeFormat 
cover_C5502231007_b730125a746a424ab5f31597e564bc90.pdfCover1.1 MBAdobe PDFView/Open
fulltext_C5502231007_33283c9ca4964bdd949dd4a2379932f3.pdf
  Restricted Access
Fulltext2.68 MBAdobe PDFView/Open
lampiran_C5502231007_abd0af2e9e174d1ea2ca0f7e706125ab.pdf
  Restricted Access
Lampiran1.09 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.