Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/168868
Title: Penyelesaian Travelling Salesman Problem Menggunakan Algoritma Ant Colony System
Other Titles: 
Authors: Silalahi, Bib Paruhum
Mayyani, Hidayatul
WIDYASARI, NURANI CANDRA
Issue Date: 2025
Publisher: IPB University
Abstract: Proses distribusi memerlukan strategi perencanaan rute yang efektif dan efisien untuk meminimalkan biaya operasional dan waktu pengiriman. Salah satu permasalahan di bidang optimasi yang berfokus pada pencarian rute terpendek adalah Travelling Salesman Problem (TSP). TSP dapat diselesaikan menggunakan metode eksak dan metode pendekatan. Namun, penyelesaian TSP dalam kasus besar dengan metode eksak cenderung memakan waktu yang sangat lama. Maka dari itu berbagai metode pendekatan dikembangkan untuk menyelesaikan TSP ini. Pada penelitian ini, TSP diselesaikan menggunakan metode pendekatan Ant Colony System (ACS) dan metode eksak Branch and Bound (BnB). Kemudian solusi akhir yang diperoleh dibandingkan dengan metode pendekatan lainnya di antaranya adalah Bee Colony Optimization (BCO), Ant Colony Optimization (ACO), Grey Wolf Optimization (GWO) dan Simulated Annealing (SA). Hasil yang diperoleh menunjukkan bawah algoritma ACS memiliki kinerja yang lebih baik dengan solusi yang dihasilkan paling mendekati optimal dan waktu komputasinya lebih cepat dibandingkan dengan metode BCO, ACO, GWO, dan SA.
The distribution process requires an effective and efficient route planning strategy to minimize operational costs and delivery time. One of the optimization problems that focuses on finding the shortest route is the Travelling Salesman Problem (TSP). The TSP can be solved using exact methods and approximation methods. However, solving the TSP in large-scale cases using exact methods tends to be very time-consuming. Therefore, various approximation methods have been developed to solve the TSP. In this study, the TSP is solved using the Ant Colony System (ACS) as an approximation method and Branch and Bound (BnB) as an exact method. The final solution is then compared with other approximation methods, including Bee Colony Optimization (BCO), Ant Colony Optimization (ACO), Grey Wolf Optimization (GWO) and Simulated Annealing (SA). Three TSP cases are examined in this study. The result show that the ACS algorithm performs better with producing solutions that are closest to optimal with faster computation times compared to the BCO, ACO, GWO, and SA methods.
URI: http://repository.ipb.ac.id/handle/123456789/168868
Appears in Collections:UT - Mathematics

Files in This Item:
File Description SizeFormat 
cover_G5401211020_d1fd0a025e7a4efb8442b637f8f8491a.pdfCover617.8 kBAdobe PDFView/Open
fulltext_G5401211020_54b7603d1ed24e4e93812d0a7e2702ef.pdf
  Restricted Access
Fulltext2.03 MBAdobe PDFView/Open
lampiran_G5401211020_3794ce3739144847a6bbfc041137f9fa.pdf
  Restricted Access
Lampiran487.4 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.