Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/168852
Title: PENYELESAIAN VEHICLE ROUTING PROBLEM MENGGUNAKAN PEMROGRAMAN PYTHON BERBASIS BEE COLONY OPTIMIZATION
Other Titles: Vehicle Routing Problem Solution Using Python Programming Based on Bee Colony Optimization
Authors: Supriyo, Prapto Tri
Hanum, Farida
Wibowo, Aditya Dwi Prasetyo
Issue Date: 2025
Publisher: IPB University
Abstract: Pengangkutan barang merupakan permasalahan yang dialami produsen suatu barang dalam memasarkan produk mereka. Permasalahan tersebut menjadi salah satu faktor penting dalam pencapaian efisiensi dan efektivitas suatu produsen. Permasalahan yang sering dihadapi adalah Vehicle Routing Problem, yaitu penentuan rute optimal untuk armada kendaraan dalam mengantarkan barang ke beberapa lokasi dengan mempertimbangkan berbagai kendala seperti kapasitas kendaraan, jarak tempuh, dan waktu pengiriman. Dalam karya ilmiah ini, dibuat model untuk permasalahan pengangkutan barang dengan beberapa tujuan, yaitu menghasilkan rute yang meminimumkan total jarak tempuh dengan tetap mempertimbangkan kapasitas kendaraan. Penelitian ini menggunakan algoritma Bee Colony Optimization dengan bantuan software Python 3.11.9 yang menghasilkan solusi yang lebih efisien dan efektif dibandingkan dengan metode manual. Hasil implementasi pada masalah pengiriman barang menunjukkan bahwa algoritma ini mampu menghasilkan rute dengan total jarak tempuh dan waktu pengiriman yang lebih singkat.
The transportation of goods is a common issue faced by manufacturers in distributing their products. This challenge plays a crucial role in achieving efficiency and effectiveness in their operations. One of the most frequently encountered problems is the Vehicle Routing Problem (VRP), which involves determining the optimal routes for a fleet of vehicles to deliver goods to multiple destinations while considering various constraints such as vehicle capacity, travel distance, and delivery time. In this scientific work, a model is developed to address the goods transportation problem with multiple objectives, primarily to generate routes that minimize total travel distance while accounting for vehicle capacity. The study employs the Bee Colony Optimization algorithm implemented using Python version 3.11.9, which provides more efficient and effective solutions compared to manual methods. The results of the implementation on a delivery problem show that the algorithm is capable of generating routes with shorter total distances and delivery times.
URI: http://repository.ipb.ac.id/handle/123456789/168852
Appears in Collections:UT - Mathematics

Files in This Item:
File Description SizeFormat 
cover_G54180007_9e165e8b601a482a8b2c263477b985e0.pdfCover2.56 MBAdobe PDFView/Open
fulltext_G54180007_de6fb1542d8544b9ad1968eee2a49484.pdf
  Restricted Access
Fulltext3.22 MBAdobe PDFView/Open
lampiran_G54180007_b87078aa1671422daf5d724b4ff383af.pdf
  Restricted Access
Lampiran2.42 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.