Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/168824
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSeminar, Kudang Boro-
dc.contributor.advisorSudradjat-
dc.contributor.authorZahra, Khairunnisa Az-
dc.date.accessioned2025-08-12T06:45:26Z-
dc.date.available2025-08-12T06:45:26Z-
dc.date.issued2025-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/168824-
dc.description.abstractKelapa sawit merupakan komoditas utama di Indonesia dengan luas areal perkebunan yang terus berkembang. Namun, produktivitasnya masih tergolong rendah. Salah satu faktor penting yang memengaruhi hasil panen kelapa sawit adalah ketersediaan unsur hara, termasuk mangan (Mn) sehingga pemantauannya sangat krusial untuk meningkatkan produktivitas kelapa sawit. Namun, metode konvensional berbasis sampel dan penggunaan laboratorium untuk mengukur kandungan mangan umumnya memerlukan waktu yang lama, biaya tinggi, dan cakupan spasial yang terbatas. Penelitian ini bertujuan untuk memprediksi kandungan mangan (Mn) pada perkebunan kelapa sawit di lahan gambut, mineral dan data gabungan dari lahan gambut dan mineral menggunakan citra Sentinel-2A dan algoritma Random Forest Regression. Penelitian ini mengintegrasikan data citra Sentinel-2A dan indeks vegetasi sebagai variabel bebas, serta data sampel daun kelapa sawit sebagai variabel terikat. Data citra yang diperoleh melalui tahap pra-proses, yang meliputi resampling resolusi citra, cropping sesuai dengan peta batas kebun, dan ekstraksi citra menggunakan point sampling tool. Data kemudian dibagi menjadi 90% untuk pelatihan dan 10% untuk pengujian model. Hasil penelitian menunjukkan bahwa model spesifik untuk lahan mineral menghasilkan correctness yang baik sebesar 86,87%, sedangkan model spesifik pada lahan gambut menghasilkan correctness sebesar 76,48% yang masih dapat dikategorikan layak. Model gabungan yang diuji pada keseluruhan data memberikan correctness sebesar 77,28%, serta masing-masing 85,27% dan 73,74% ketika diuji pada data mineral dan gambut secara terpisah.-
dc.description.abstractOil palm is a major agricultural commodity in Indonesia, with plantation areas continuing to expand. However, its productivity remains relatively low. One of the key factors affecting oil palm yield is the availability of nutrients, including manganese (Mn), making its monitoring crucial for improving productivity. Conventional sample-based and laboratory-based methods for measuring manganese content are generally time-consuming, costly, and spatially limited. This study aims to predict manganese (Mn) content in oil palm plantations located on peat soil, mineral soil, and a combination of both using Sentinel-2A imagery and the Random Forest Regression algorithm. The study integrates Sentinel-2A imagery and vegetation indices as independent variables, and manganese content from oil palm leaf samples as the dependent variable. The imagery data underwent preprocessing steps, including resolution resampling, cropping according to plantation boundary maps, and pixel value extraction using point sampling tools. The dataset was then divided into 90% for training and 10% for testing the model. The results show that the site-specific model for mineral soil produced a high correctness of 86,87%, while the model for peat soil achieved a correctness of 76,48%, which is still considered acceptable. The combined model tested on all data yielded a correctness of 77,28%, with 85,27% and 73,74% when tested separately on mineral and peat soil data, respectively.-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titlePenerapan Algoritma Random Forest Regression untuk Deteksi Kandungan Mangan Tanaman Kelapa Sawit Berbasis Citra Sentinel-2Aid
dc.title.alternativeApplication of Random Forest Regression Algorithm for Manganese Content Detection in Oil Palm Plants Based on Sentinel 2A Imagery-
dc.typeSkripsi-
dc.subject.keywordmanganeseid
dc.subject.keywordpalm oilid
dc.subject.keywordsentinel-2Aid
dc.subject.keywordvegetation indexid
dc.subject.keywordrandom forest regressionid
Appears in Collections:UT - Agricultural and Biosystem Engineering

Files in This Item:
File Description SizeFormat 
cover_F1401211048_a1a063ff020e48a88ae1ce52b9e1e40f.pdfCover460.05 kBAdobe PDFView/Open
fulltext_F1401211048_80d466ae1e3d426a855591b0d61a63cb.pdf
  Restricted Access
Fulltext1.86 MBAdobe PDFView/Open
lampiran_F1401211048_133176daeadc4192a83c35a836e86b3e.pdf
  Restricted Access
Lampiran1.39 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.