Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/168816| Title: | Kontrol Optimum dan Analisis Efektivitas Biaya pada Model SVEIQR-SEI Penyebaran Virus Cacar Monyet |
| Other Titles: | Optimal Control and Cost-Effectiveness Analysis of the SVEIQR-SEI Model for Monkeypox Virus Spread |
| Authors: | Bakhtiar, Toni Kusnanto, Ali Satiyah, Siti Luna |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Ancaman penyakit zoonosis seperti cacar monyet terus berkembang sehingga pendekatan matematis diperlukan untuk merancang strategi pengendalian yang efektif. Dalam penelitian ini, model SVEIQR-SEI direkonstruksi untuk menggambarkan dinamika penyebaran virus cacar monyet pada manusia dan tikus gambia sebagai reservoir. Tiga variabel kontrol diterapkan, yaitu vaksinasi pada individu rentan, karantina terhadap manusia yang terinfeksi, dan karantina tikus gambia dalam pengiriman internasional. Permasalahan kontrol optimum dianalisis melalui prinsip maksimum Pontryagin dan penyelesaian numerik dilakukan dengan metode forward-backward sweep dengan integrasi Runge-Kutta orde-4. Efektivitas biaya pengendalian dianalisis dengan pendekatan ACER dan ICER. Berdasarkan hasil simulasi, penurunan infeksi paling signifikan dicapai melalui kombinasi ketiga kontrol, sedangkan skenario dengan satu kontrol, yaitu karantina manusia terinfeksi dinilai paling efisien dalam menekan infeksi dengan biaya yang rendah. The threat of zoonotic diseases such as monkeypox continues to grow, necessitating mathematical approaches to design effective control strategies. In this study, the SVEIQR-SEI model was reconstructed to describe the transmission dynamics of the monkeypox virus. Three control variables were incorporated, namely vaccination of susceptible individuals, quarantine of infected humans, and quarantine of giant pouched rats in international shipments. The optimal control problem is analyzed using the Pontryagin’s maximum principle and solved numerically via the forward-backward sweep method with fourth-order Runge-Kutta integration. The cost-effectiveness of control strategies was evaluated using ACER and ICER. Simulation results showed that the most significant infection reduction was achieved through the combination of all three controls, while the scenario with a single control, namely quarantine of infected humans, was found to be the most cost-efficient in reducing infections. |
| URI: | http://repository.ipb.ac.id/handle/123456789/168816 |
| Appears in Collections: | UT - Mathematics |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G5401211084_561b6bed110f450c9cbced59284be9bc.pdf | Cover | 445.32 kB | Adobe PDF | View/Open |
| fulltext_G5401211084_b4b21e03feaf43d9a462306d08c8a141.pdf Restricted Access | Fulltext | 2.2 MB | Adobe PDF | View/Open |
| lampiran_G5401211084_97b39c46295d453b94a5b3a9b0f0b12c.pdf Restricted Access | Lampiran | 436.99 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.