Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/168758| Title: | Sistem Penampung Minyak Jelantah Berbasis IoT dengan Pendeteksi Keakuratan Klasifikasi Warna Minyak Menggunakan Random Forest |
| Other Titles: | IoT-Based Used Cooking Oil Collection System with Oil Color Classification Accuracy Detection Using Random Forest |
| Authors: | Mindara, Gema Parasti Abdillah, Muhamad Zikri |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Sistem berbasis Internet of Things (IoT) ini dikembangkan untuk mengelola limbah minyak jelantah dengan memanfaatkan sensor TCS34725 untuk klasifikasi warna minyak dan sensor ultrasonik untuk memantau tingkat kepenuhan drum penampung. Minyak jelantah pertama kali melewati saringan di corong agar aliran tetap lancar, kemudian dialirkan melalui flow sensor menuju tangki pemisahan berdasarkan warna. Sensor TCS34725 mengklasifikasikan minyak, sementara flow sensor mengukur volume aliran setiap sesi.
Minyak yang telah dipisahkan mengalir ke drum penampung yang dipantau oleh sensor ultrasonik untuk mengetahui kepenuhan secara real-time, dengan data ketinggian minyak ditampilkan pada LCD. Semua data dikirim ke Firebase dan dianalisis menggunakan algoritma Random Forest untuk meningkatkan keakuratan klasifikasi warna minyak. Sistem ini menyediakan solusi pengelolaan limbah minyak jelantah yang praktis dan ramah lingkungan. This Internet of Things (IoT)-based system was developed to manage used cooking oil waste by utilizing a TCS34725 sensor for oil color classification and an ultrasonic sensor to monitor the fullness of the storage drum. The used cooking oil first passes through a filter in a funnel to maintain a smooth flow, then flows through a flow sensor to a color-separating tank. The TCS34725 sensor classifies the oil, while the flow sensor measures the flow volume each time. The separated oil then flows into a storage drum, which is monitored by an ultrasonic sensor for real-time fullness data, with oil level data displayed on an LCD. All data is sent to Firebase and analyzed using a Random Forest algorithm to improve the accuracy of oil color classification. This system provides a practical and environmentally friendly solution for waste cooking oil management. |
| URI: | http://repository.ipb.ac.id/handle/123456789/168758 |
| Appears in Collections: | UT - Computer Engineering Tehcnology |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_J0304211146_63bb8d5f250c4737b0d8cb78a3b8feca.pdf | Cover | 1.4 MB | Adobe PDF | View/Open |
| fulltext_J0304211146_e217cd45c51546ffbbfe8138bd895338.pdf Restricted Access | Fulltext | 5.46 MB | Adobe PDF | View/Open |
| lampiran_J0304211146_8d3e96e8c75c482c9869c731a10c9078.pdf Restricted Access | Lampiran | 3.59 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.