Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/168681| Title: | Estimasi Kandungan Lignin pada Dedak Padi Bercampur Sekam Menggunakan PNN dengan Model Warna YCbCr |
| Other Titles: | Estimation of Lignin Content in Rice Bran Mixed with Husk Using PNN with the YCbCr Color Model |
| Authors: | Kustiyo, Aziz Bakhri, Zuhdi Mukarram |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Adulteration of rice bran is commonly done by mixing it with materials of similar appearance but lower nutritional value, such as ground rice husk. A key indicator of such adulteration is increased lignin content. Adding phloroglucinol solution to the mixture produces a red color that varies with lignin levels. This study aims to estimate lignin content in rice bran-husk mixtures using artificial intelligence and digital image processing. YCbCr color model images of eleven rice bran-husk compositions, treated with phloroglucinol, were analyzed. The lignin content of each variation was measured in the lab and used to define eleven classes. A Probabilistic Neural Network (PNN) was employed as the classifier, with image histograms of varying bin sizes as input. PNN performance was evaluated using 4-fold cross-validation. Results showed the highest average accuracy of 85.80% with 32 bins and histograms from all three YCbCr channels. Pemalsuan dedak padi umumnya dilakukan dengan mencampurkan bahan lain yang memiliki karakteristik fisik serupa namun bernilai nutrisi lebih rendah, seperti sekam padi giling. Salah satu indikator utamanya adalah peningkatan kadar lignin. Penambahan larutan phloroglucinol pada campuran dedak dan sekam menghasilkan warna merah, yang bervariasi sesuai kandungan lignin. Penelitian ini bertujuan mengestimasi kadar lignin dalam dedak bercampur sekam menggunakan pendekatan kecerdasan buatan dan pengolahan citra digital. Citra yang digunakan adalah citra model warna YCbCr dari dedak dan sekam dengan sebelas variasi komposisi yang telah ditambahkan larutan phloroglucinol. Kadar lignin dari sebelas variasi tersebut diukur di laboratorium dan digunakan sebagai dasar untuk menentukan sebelas kelas. Algoritma Probabilistic Neural Network (PNN) digunakan sebagai pengklasifikasi, dengan histogram citra dengan variasi jumlah bin sebagai input. Kinerja PNN dievaluasi menggunakan 4-fold cross-validation. Hasil menunjukkan akurasi rata-rata tertinggi sebesar 85,80% dengan 32 bin dan input histogram dari ketiga kanal YCbCr. |
| URI: | http://repository.ipb.ac.id/handle/123456789/168681 |
| Appears in Collections: | UT - Computer Science |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G64180060_8ac46a23dc3d4f70ac9ca4f4ab8082ee.pdf | Cover | 2.1 MB | Adobe PDF | View/Open |
| fulltext_G64180060_6b8a869fdf0943659a95486ee2455837.pdf Restricted Access | Fulltext | 2.88 MB | Adobe PDF | View/Open |
| lampiran_G64180060_1377b24331604d2bbe063e569465971b.pdf Restricted Access | Lampiran | 2.04 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.