Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/168611
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRenanti, Medhanita Dewi
dc.contributor.authorFawwaz, Kemas muhammad Adnan fakhri Sjaf
dc.date.accessioned2025-08-11T04:37:05Z
dc.date.available2025-08-11T04:37:05Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/168611
dc.description.abstractPT Amerta Indah Otsuka masih melakukan maintenance secara preventif, yang beresiko menyebabkan downtime yang tidak terduga dan kerugian yang besar. Penelitian ini bertujuan untuk mengimplementasikan algoritma LightGBM untuk prediksi kecepatan getaran mesin sebagai fitur predictive maintenance menggunakan model pembelajaran mesin. Metode CRISP-DM diterapkan karena memungkinkan pengembangan juga fokus terhadap datasetnya. Hasil penelitian ini mencakup pemahaman data, pembersihan data, rekayasa fitur, pelatihan model, evaluasi dan perbandingan model. Algoritma light gradient boosting machine digunakan sebagai model pembelajaran mesin. Evaluasi model dilakukan menggunakan mean actual error (MAE). Pembuatan model dilakukan menggunakan library LigthtGBM dan dashboard dibuat menggunakan FastAPI, Typescript, dan React. Model sudah menghasilkan akurasi yang cukup baik dan sesuai berdasarkan hasil metrik yang didapatkan. Diharapkan dengan fitur ini downtime dapat dihindari, kerugian perusahaan juga dapat diminimalisir.
dc.description.abstractPT Amerta Indah Otsuka still performs preventive maintenance, which risks unexpected downtime and significant losses. This study aims to implement the LightGBM algorithm for machine vibration velocity prediction as a predictive maintenance feature using a machine learning model. The CRISP-DM method was applied because it allows for focused development of the dataset. The research results include data understanding, data cleaning, feature engineering, model training, evaluation, and model comparison. The Light Gradient Boosting Machine algorithm was used as the machine learning model. Model evaluation was performed using the mean actual error (MAE). The model was built using the LightGBM library, and the dashboard was created using FastAPI, TypeScript, and React. The model has produced fairly good accuracy and is consistent based on the obtained metrics. It is hoped that this feature can prevent downtime and minimize company losses.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titlePrediksi Kecepatan Getaran Mesin Menggunakan Algoritma Light Gradient Boosting Machine di PT Amerta Indah Otsukaid
dc.title.alternativeMachine Vibration Speed Prediction using the Light Gradient Boosting Machine Algorithm at PT Amerta Indah Otsuka
dc.typeTugas Akhir
dc.subject.keywordLightGBMid
dc.subject.keywordCRISP-DMid
dc.subject.keywordMachine Learningid
dc.subject.keywordMachine Vibration Speedid
dc.subject.keywordPredictive Maintenanceid
Appears in Collections:UT - Software Engineering Technology

Files in This Item:
File Description SizeFormat 
cover_J0303211171_64a32cd398074c09a131e4e3cf47af5b.pdfCover2.25 MBAdobe PDFView/Open
fulltext_J0303211171_a63e5829ae7244efa14c561f43489da5.pdf
  Restricted Access
Fulltext3.04 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.