Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/168550| Title: | Perbandingan Kinerja Model ARIMA dan Long Short-Term Memory dalam Memprediksi Harga Saham Microsoft |
| Other Titles: | Comparison of ARIMA and Long Short-Term Memory Performance in Forecasting Microsoft Stock Prices |
| Authors: | Mangku, I Wayan Ardana, Ngakan Komang Kutha Fazila, Rifa Khaira |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Pertumbuhan ekonomi Indonesia terus didorong melalui peningkatan investasi, termasuk investasi di pasar saham yang menawarkan potensi keuntungan seperti capital gain dan dividen, namun juga mengandung risiko seperti capital loss. Fluktuasi pada harga saham memunculkan kebutuhan akan metode prediksi yang baik untuk membantu investor dalam mengambil keputusan. Penelitian ini bertujuan membandingkan kinerja model ARIMA dan LSTM dalam memprediksi harga saham Microsoft. Data yang digunakan berupa harga penutupan saham harian Microsoft dari 15 Februari 2023 – 12 Februari 2025 yang dibagi menjadi 400 data training dan 100 data testing. Pada model ARIMA, model ARIMA terbaik adalah ARIMA(3,1,3) dengan parameter signifikan terbanyak pada taraf 5% serta AIC terkecil sebesar -2281.03. Sementara itu, LSTM dibangun dengan arsitektur dua layer LSTM dan dua layer dense. Evaluasi kinerja model dilakukan dengan membandingkan nilai MAPE kedua model di mana nilai MAPE model ARIMA(3,1,3) sebesar 2.52% dan nilai MAPE model LSTM sebesar 1.77%. Nilai MAPE pada model LSTM yang lebih rendah mengindikasikan bahwa model LSTM memberikan prediksi yang lebih baik. Indonesia’s economic growth continues to be driven by increased investment, including in the stock market, which, offers potential returns such as capital gains and dividends and carries risks such as capital loss. Fluctuations in stock prices highlights the need for reliable forecasting methods to assist investors in making better decisions. This study compares the performance of ARIMA model and the LSTM model in predicting Microsoft stock prices. The data used consist of daily closing prices of Microsoft stock from February 15, 2023, to February 12, 2025, divided into 400 training data and 100 testing data. The best ARIMA model selected was ARIMA(3,1,3), chosen based on having the most statistically significant parameters at the 5% level and the lowest AIC value of -2281.03. Meanwhile, the LSTM model was built with an architecture consisting of two LSTM layers and two dense layers. Model performance was evaluated using the MAPE, where the ARIMA model yielded a MAPE of 2.52% and the LSTM model achieved a lower MAPE of 1.77%. The lower MAPE value indicates that the LSTM model provides more accurate predictions. |
| URI: | http://repository.ipb.ac.id/handle/123456789/168550 |
| Appears in Collections: | UT - Mathematics |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G5401211007_d0ac55fb2cc741c0bdd4bc4684c70ec4.pdf | Cover | 410.8 kB | Adobe PDF | View/Open |
| fulltext_G5401211007_89d983c0bcb341558b7310a5d6498dbd.pdf Restricted Access | Fulltext | 1.43 MB | Adobe PDF | View/Open |
| lampiran_G5401211007_cbd477c09d3e47afb17447c22265b520.pdf Restricted Access | Lampiran | 361.99 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.