Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/168406
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPanjaitan, James Parlindungan
dc.contributor.advisorArhatin, Risti Endriani
dc.contributor.authorNugraha, Aryasatya
dc.date.accessioned2025-08-08T06:05:30Z
dc.date.available2025-08-08T06:05:30Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/168406
dc.description.abstractKecamatan Muara Gembong memiliki potensi besar pada ekosistem mangrove, namun kondisi luasan mangrove terus mengalami perubahan karena konversi lahan dan abrasi. Penelitian ini bertujuan untuk meninjau mangrove melalui teknologi penginderaan jauh khususnya dengan citra Sentinel-2A. Metode yang digunakan yakni penerapan dua algoritma klasifikasi berbasis piksel yaitu maximum likelihood (MLH) dan support vector machine (SVM), serta penghitungan indeks vegetasi NDVI dan analisis regresi terhadap data tutupan kanopi hasil pengambilan lapang pada pemetaan sebaran dan kerapatan mangrove. Akurasi yang dihasilkan MLH dan SVM secara berturut-turut adalah 84,55% dan 91,82%. Klasifikasi terbaik dihitung lebih lanjut dengan indeks vegetasi NDVI dan menghasilkan luasan mangrove total di Desa Pantai Harapanjaya sebesar 255,12 ha dengan dominan kelas mangrove sedang sebesar 106,55 ha. Korelasi kuat antara tutupan kanopi mangrove dengan nilai NDVI sebesar 76,47%, sementara sisanya dipengaruhi oleh faktor lain.
dc.description.abstractMuara Gembong District has significant potential in terms of mangrove ecosystems. However, the extent of mangroves in this district continues to change due to land conversion and coastal abrasion. This study aimed to map the distribution and density of mangroves using remote sensing technology, particularly Sentinel-2A imagery. The method involved the application of two pixel-based classification algorithms Maximum Likelihood (MLH) and Support Vector Machine (SVM) as well as the calculation of the NDVI vegetation index and regression analysis of canopy cover data obtained from field surveys to map the distribution and density of mangroves. The accuracy achieved by MLH and SVM was 84.55% and 91.82%, respectively. The best-performing classification was further analyzed using the NDVI vegetation index, resulting in a total mangrove area of 255.12 hectares, with the majority classified as moderate-density mangrove (106.55 hectares). A strong correlation of 76.47% was found between mangrove canopy cover and NDVI values, while the remaining variation was influenced by other factors.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titlePemetaan Distribusi dan Kerapatan Mangrove Menggunakan Citra Sentinel-2A di Desa Pantai Harapanjaya, Kecamatan Muara Gembongid
dc.title.alternative
dc.typeSkripsi
dc.subject.keywordMangroveid
dc.subject.keywordMaximum Likelihoodid
dc.subject.keywordSupport Vector Machines (SVM)id
dc.subject.keywordsentinel-2Aid
dc.subject.keywordPantai Harapanjayaid
Appears in Collections:UT - Marine Science And Technology

Files in This Item:
File Description SizeFormat 
cover_C5401211060_0566800ca74f46469e646b79070dc70f.pdfCover568.35 kBAdobe PDFView/Open
fulltext_C5401211060_6208fd71192e4e459f1deb75ee3df7f6.pdf
  Restricted Access
Fulltext2.12 MBAdobe PDFView/Open
lampiran_C5401211060_f318b2a4526844479406b262495682a2.pdf
  Restricted Access
Lampiran1.02 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.