Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/166968
Title: Investigasi Hidrogenasi Asetilena Menjadi Etilena pada Permukaan Katalis SiO2 Terdoping Ni dengan Berbasis Teori Fungsi Kerapatan.
Other Titles: Investigation of Acetylene Hydrogenation to Ethylene on Ni-doped SiO2 Catalyst Surface Based on Density Functional Theory
Authors: Faozan
Alatas, Husin
Ageng, Richa Amarka Muji
Issue Date: 2025
Publisher: IPB University
Abstract: Etilena adalah bahan baku penting dalam industri petrokimia, digunakan dalam produksi dikloroetilena, oksida etilena, dan polietilena. Produksi etilena dapat dilakukan melalui dua jalur: petrokimia (cracking nafta dan steam cracking etana) dan non-petrokimia (konversi batu bara). Pada jalur petrokimia, asetilena terbentuk sebagai pengotor, sedangkan pada jalur non-petrokimia, asetilena menjadi target konversi. Hidrogenasi katalitik dengan katalis berbasis palladium adalah metode yang paling efektif, namun biaya tinggi palladium mendorong pencarian alternatif. Penelitian ini menggunakan teori fungsi kerapatan untuk mempelajari permukaan katalis SiO2 yang terdoping Ni melalui model doping tunggal atom Ni dan doping monolayer atom Ni. Modifikasi ini menjadikan material semikonduktor tipe-p dengan band gap 4,1 eV (model I) dan 1,9 eV (model II). Model II lebih potensial dalam aktivitas katalitik dengan jarak ikatan Ni–O 1,702 Å, sementara model I lebih stabil secara struktural dengan energi total - 2132,124 Ry.
Ethylene is an essential feedstock in the petrochemical industry, widely utilized in the production of dichloroethylene, ethylene oxide, and polyethylene. Ethylene production can be achieved via two main pathways: petrochemical (naphtha cracking and ethane steam cracking) and non-petrochemical (coal conversion). In the petrochemical route, acetylene is generated as an impurity, whereas in the nonpetrochemical route, acetylene serves as the target for conversion. Catalytic hydrogenation using palladium-based catalysts is the most effective method; however, the high cost of palladium has prompted the search for alternative catalysts. This study employs density functional theory (DFT) to investigate the surface of SiO2 catalysts doped with Ni, using both single-atom Ni doping and Ni monolayer doping models. These modifications result in p-type semiconductor materials with band gaps of 4.1 eV (Model I) and 1.9 eV (Model II). Model II exhibits higher catalytic potential, characterized by a Ni–O bond length of 1.702 Å, while Model I
URI: http://repository.ipb.ac.id/handle/123456789/166968
Appears in Collections:UT - Physics

Files in This Item:
File Description SizeFormat 
cover_G7401201079_5dbd50047eb649ae84cbdfd2b0566f1d.pdfCover717.61 kBAdobe PDFView/Open
fulltext_G7401201079_193d6eddaade438982a58322c163b6a9.pdf
  Restricted Access
Fulltext1.98 MBAdobe PDFView/Open
lampiran_G7401201079_c489f70cb3a847f49ebf1d3f8517359d.pdf
  Restricted Access
Lampiran516.8 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.