Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/166948Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | Ruhiyat | - |
| dc.contributor.advisor | Anisa, Rahma | - |
| dc.contributor.author | Mahiradewi, Nayla Jasmine | - |
| dc.date.accessioned | 2025-08-07T06:34:27Z | - |
| dc.date.available | 2025-08-07T06:34:27Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/166948 | - |
| dc.description.abstract | Stroke merupakan kondisi medis serius yang dapat menyebabkan kecacatan permanen atau bahkan kematian jika tidak ditangani dengan cepat. Penelitian ini menggunakan data sekunder dari dataset stroke yang terdiri dari 5,110 observasi, mencakup informasi mengenai usia, jenis kelamin, riwayat hipertensi, penyakit jantung, kadar glukosa rata-rata, indeks massa tubuh, tipe tempat tinggal, tipe pekerjaan, dan riwayat merokok. Dua metode machine learning, random forest dan XGBoost, dipilih untuk memprediksi risiko stroke. Kedua metode tersebut dianggap cocok untuk data besar dan lebih fleksibel karena tidak memerlukan asumsi parametrik. Penelitian ini bertujuan untuk membandingkan kinerja kedua metode tersebut dalam memprediksi risiko stroke. Evaluasi model dilakukan menggunakan metrik balanced accuracy, sensitivitas, spesifisitas, dan F1-score. Hasil penelitian menunjukkan bahwa XGBoost unggul pada balanced accuracy dibandingkan random forest. Analisis variable importance pada model XGBoost mengidentifikasi usia, rata-rata kadar glukosa, dan indeks massa tubuh sebagai faktor paling berpengaruh terhadap risiko stroke. Penelitian ini diharapkan dapat membantu pengembangan sistem pendukung keputusan untuk deteksi dini stroke serta memberikan wawasan mengenai faktor risiko utama yang perlu diperhatikan. | - |
| dc.description.abstract | Stroke is a serious medical condition that can lead to permanent disability or even death if not promptly managed. This study utilizes secondary data from a stroke dataset comprising 5,110 observations, including information on age, gender, history of hypertension, heart disease, average glucose level, body mass index, residence type, work type, and smoking history. Two machine learning methods, random forest and XGBoost, were chosen to predict stroke risk. Both methods are considered suitable for large datasets and are more flexible as they do not require parametric assumptions. This research aims to compare the performance of these two methods in predicting stroke risk. Model evaluation was conducted using balanced accuracy, sensitivity, specificity, and F1-score metrics. The results indicated that XGBoost performs superiorly in terms of balanced accuracy compared to random forest. Variable importance analysis from the XGBoost model identified age, average glucose level, and body mass index as the most influential factors contributing to stroke risk. This study is expected to contribute to the development of decision support systems for early stroke detection and provide insights into key risk factors that need attention. | - |
| dc.description.sponsorship | null | - |
| dc.language.iso | id | - |
| dc.publisher | IPB University | id |
| dc.title | Perbandingan Metode Machine Learning Random Forest dan XGBoost untuk Memprediksi Risiko Kejadian Stroke | id |
| dc.title.alternative | The Comparison of Random Forest and XGBoost Machine Learning Methods for Predicting Stroke Risk | - |
| dc.type | Skripsi | - |
| dc.subject.keyword | random forest | id |
| dc.subject.keyword | Machine Learning | id |
| dc.subject.keyword | XGBoost | id |
| dc.subject.keyword | Stroke | id |
| Appears in Collections: | UT - Actuaria | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G5402211067_a66d6dce86764169a4a1610ee31c2d54.pdf | Cover | 598.81 kB | Adobe PDF | View/Open |
| fulltext_G5402211067_c79776b2c243415d8ed921b1eb6b693d.pdf Restricted Access | Fulltext | 1.57 MB | Adobe PDF | View/Open |
| lampiran_G5402211067_670939b2b8184df5a08535b0b3f394b4.pdf Restricted Access | Lampiran | 191.23 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.