Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/166935
Title: Estimasi Biomassa Hutan menggunakan Citra PlanetScope dengan Pendekatan Machine Learning di Kecamatan Kahayan Hilir dan Jabiren Raya Kalimantan Tengah
Other Titles: Biomass Estimation of Forest Using Decision Tree of Machine Learning Through PlanetScope in Kahayan Hilir and Jabiren Raya Districs Cetral Kalimantan
Authors: Jaya, I Nengah Surati
Maharani, Aulia Cinta
Issue Date: 2025
Publisher: IPB University
Abstract: Tulisan ini menerangkan tentang pembangunan algoritma pohon keputusan dari pembelajar mesin untuk menduga biomassa di atas permukaan tanah pada hutan lahan kering menggunakan citra PlanetScope di Kecamatan Kahayan Hilir dan Jabiren Raya, Kabupaten Pulang Pisau, Provinsi Kalimantan Tengah. Model pohon keputusan dibangun berdasarkan kombinasi peubah spektral dan sosio-geo-biofisik. Tulisan ini menemukan bahwa model pohon keputusan terbaik diperoleh dengan peubah NDVI, NRGI, VDVI, GARI, jalan, dan elevasi menghasilkan akurasi keseluruhan tertinggi sebesar 94.5% dengan akurasi Kappa sebesar 0.9. Model pohon keputusan yang dihasilkan dari penelitian ini juga menunjukkan jika adanya peningkatan pada NDVI selaras dengan peningkatan biomassa.
This paper describes a development of decision tree algorithm of machine learning to estimate above ground biomass in dryland forest using PlanetScope imagery in Kahayan Hilir and Jabiren Raya Districs, Pulang Pisau Regency, Central Kalimantan. The model of decision tree was developed by combined spectral and sosio-geo-biophysics variables. This paper found that the best model of decision tree was obtained by using NDVI, NRGI, VDVI, GARI, proximity of road, and elevation variables, provided the highest overall accuracy of 94.5% and Kappa accuracy of 0.9. The model of decision tree from this study also proven that an increase of NDVI indicates an increase in biomass.
URI: http://repository.ipb.ac.id/handle/123456789/166935
Appears in Collections:UT - Forest Management

Files in This Item:
File Description SizeFormat 
cover_E1401211075_e81bb5a1eb2641f0b8bad581b8d00479.pdfCover582.09 kBAdobe PDFView/Open
fulltext_E1401211075_a92df26ef3014fb995202fd4bfe3116d.pdf
  Restricted Access
Fulltext2.38 MBAdobe PDFView/Open
lampiran_E1401211075_5d0346b6a04a4fb3b0c1709a4b67cb93.pdf
  Restricted Access
Lampiran282.06 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.