Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/166833
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBudiarti, Retno
dc.contributor.advisorArdana, Ngakan Komang Kutha
dc.contributor.authorMulyasari, Rindi Melati
dc.date.accessioned2025-08-06T08:18:27Z
dc.date.available2025-08-06T08:18:27Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/166833
dc.description.abstractPenelitian ini bertujuan untuk membandingkan kinerja tiga metode clustering, yaitu Bayesian Hierarchical Clustering (BHC), Partitioning Around Medoids (PAM), dan Density-Based Spatial Clustering of Applications with Noise (DBSCAN), dalam mengelompokkan saham berdasarkan indikator keuangan fundamental. Data yang digunakan berupa 808 saham yang diperdagangkan di Bursa Efek Indonesia (BEI) pada tahun 2024, dengan variabel meliputi beta saham, return saham, Return on Asset (ROA), Return on Equity (ROE), dan Earning per Share (EPS). Metode BHC menghasilkan empat cluster, metode PAM menghasilkan dua cluster, sementara DBSCAN membentuk dua cluster utama. Hasil evaluasi menggunakan silhouette score menunjukkan bahwa metode DBSCAN memiliki performa clustering yang lebih baik dengan nilai rata-rata sebesar 0.66, metode PAM menghasilkan nilai 0.51, sedangkan metode BHC hanya menghasilkan nilai -0.02. Analisis karakteristik cluster menunjukkan bahwa DBSCAN mampu mengelompokkan saham secara lebih jelas dan efisien berdasarkan pola kinerja keuangan. Oleh karena itu, DBSCAN lebih direkomendasikan sebagai metode clustering saham dalam konteks data yang bersifat kontinu dan memiliki outlier. Kata kunci: BHC, clustering, DBSCAN, PAM, silhouette score.
dc.description.abstractThis study aims to compare the performance of two clustering methods, namely Bayesian Hierarchical Clustering (BHC), Partitioning Around Medoids (PAM), and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), in classifying stocks based on fundamental financial indicators. The dataset consists of 808 stocks traded on the Indonesia Stock Exchange (IDX) in 2024, with variables including stock beta, stock return, Return on Assets (ROA), Return on Equity (ROE), and Earning per Share (EPS). The BHC method produced four clusters, PAM formed two main clusters, while DBSCAN formed two main clusters. Evaluation using the silhouette score shows that DBSCAN has better clustering performance with an average score of 0.66, PAM achieved 0.51, while BHC only achieved -0.02. The cluster characteristic analysis demonstrates that DBSCAN is more capable of grouping stocks clearly and efficiently based on financial performance patterns. Therefore, DBSCAN is more recommended as a stock clustering method, especially for continuous data with potential outliers Keywords: BHC, clustering, DBSCAN, PAM, silhouette score.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titlePerbandingan Clustering Saham dengan Metode BHC, PAM, dan DBSCANid
dc.title.alternativeComparison of Stock Clustering Using BHC, PAM, and DBSCAN Methods
dc.typeSkripsi
dc.subject.keywordClusteringid
dc.subject.keywordDBSCANid
dc.subject.keywordPAMid
dc.subject.keywordBHCid
dc.subject.keywordSilhoutte Scoreid
Appears in Collections:UT - Actuaria

Files in This Item:
File Description SizeFormat 
cover_G5402211048_8c807e0b0103457a8b5f44699f01da34.pdfCover2.25 MBAdobe PDFView/Open
fulltext_G5402211048_96441d4841bd40a6b92affd8a6c9e66e.pdf
  Restricted Access
Fulltext8.4 MBAdobe PDFView/Open
lampiran_G5402211048_86ecd6bc110c4bdc99898f85f84c15ec.pdf
  Restricted Access
Lampiran631.7 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.