Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/166830
Title: Pengembangan Fitur Prediksi Penjualan Roti Kalkun Menggunakan Long Short Term Memory di Jimmy Hantu Foundation
Other Titles: Development of a Sales Forecasting Feature for Roti Kalkun Using Long Short-Term Memory at the Jimmy Hantu Foundation
Authors: Novianty, Inna
Kuntari, Wien
Saputra, Ananda Prathama
Issue Date: 2025
Publisher: IPB University
Abstract: Penelitian ini bertujuan untuk mengembangkan fitur prediksi penjualan Roti Kalkun menggunakan Long Short Term Memory di Jimmy Hantu Foundation. Proses pengembangan dilakukan dengan pendekatan CRISP-DM, dimulai dari tahap pemahaman bisnis hingga implementasi model ke dalam sistem berbasis web. Data penjualan Roti Kalkun periode Maret 2023 hingga Januari 2025 digunakan sebagai acuan pelatihan model. Evaluasi kinerja model dilakukan menggunakan standar Mean Absolute Percentage Error (MAPE). Hasil pengujian menunjukkan bahwa model mampu menghasilkan prediksi dengan tingkat error sebesar 6,54%, yang termasuk dalam kategori sangat baik. Hal ini menunjukkan bahwa model yang dikembangkan dapat digunakan secara andal dalam membantu mendukung pengambilan keputusan di perusahaan
This study aims to develop a sales prediction feature for Roti Kalkun using the Long Short Term Memory at the Jimmy Hantu Foundation. The development process follows the CRISP-DM approach, starting from business understanding to the deployment of the model into a web-based system. Sales data from March 2023 to January 2025 were used to train the model. Model performance was evaluated using the Mean Absolute Percentage Error (MAPE) metric. The testing results indicate that the model achieved a prediction error rate of 6.54%, which falls into the category of excellent performance. This demonstrates that the developed model can be reliably utilized to support decision-making processes within the company.
URI: http://repository.ipb.ac.id/handle/123456789/166830
Appears in Collections:UT - Software Engineering Technology

Files in This Item:
File Description SizeFormat 
cover_J0303211186_5d8aa94ae78b4166a4879935223fa7d4.pdfCover2.33 MBAdobe PDFView/Open
fulltext_J0303211186_749e91a60945463999f8c1b2874e64c7.pdf
  Restricted Access
Fulltext4.01 MBAdobe PDFView/Open
lampiran_J0303211186_8fbf8156c0714e1ab6e9afc7eb408e84.pdf
  Restricted Access
Lampiran3.05 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.