Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/166487Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | Fathonah, Lathifunnisa | - |
| dc.contributor.author | Yusuf, Analiah Fahlevy | - |
| dc.date.accessioned | 2025-08-02T04:51:15Z | - |
| dc.date.available | 2025-08-02T04:51:15Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/166487 | - |
| dc.description.abstract | ANALIAH FAHLEVY YUSUF. Analisis Kinerja Sistem Absensi Karyawan Berbasis Pencocokan Encoding Wajah dengan Library OpenCV. Dibimbing oleh LATHIFUNNISA FATHONAH. Penelitian ini bertujuan untuk menganalisis kinerja sistem absensi karyawan berbasis pengenalan wajah dengan menggunakan library OpenCV. Sistem ini menggunakan metode face encoding untuk mengubah citra wajah menjadi data numerik yang dicocokkan dengan database wajah yang telah terdaftar. Teknologi ini dikembangkan sebagai alternatif terhadap metode absensi manual yang masih memiliki berbagai keterbatasan. Penelitian dilakukan dengan pendekatan kuantitatif dan kualitatif melalui pengujian sistem serta survei kepada pengguna. Evaluasi performa sistem dilakukan menggunakan confusion matrix untuk mengukur akurasi, presisi, recall, dan F1-score. Hasil pengujian menunjukkan bahwa sistem memiliki tingkat akurasi yang tinggi dalam mencatat kehadiran sebesar 97,5% dan F1-Score 95,25%, meskipun masih ditemukan kendala seperti pengenalan wajah saat pengguna memakai aksesoris. Penelitian ini memberikan gambaran menyeluruh mengenai kinerja sistem absensi berbasis pengenalan wajah dan potensi penerapannya dalam lingkungan kerja yang lebih luas. | - |
| dc.description.abstract | ANALIAH FAHLEVY YUSUF. Performance Analysis of Employee Attendance Sistem Based on Face Encoding Matching with OpenCV Library. Dibimbing oleh LATHIFUNNISA FATHONAH. This study aims to analyze the performance of a facial recognition-based employee attendance system using the OpenCV library. This system uses a face encoding method to convert facial images into numerical data that is matched with a registered facial database. This technology was developed as an alternative to manual attendance methods, which still have various limitations. The study was conducted using a quantitative and qualitative approach through system testing and user surveys. System performance evaluation was conducted using a confusion matrix to measure accuracy, precision, recall, and F1-score. Test results showed that the system achieved a high accuracy rate of 97.5% in recording attendance and an F1-Score of 95.25%, although challenges such as facial recognition issues when users wear accessories were still identified. This study provides a comprehensive overview of the performance of the facial recognition-based attendance system and its potential application in a broader work environment. | - |
| dc.description.sponsorship | PT Wijaya Karya (Persero) Tbk | - |
| dc.language.iso | id | - |
| dc.publisher | IPB University | id |
| dc.title | Analisis Kinerja Sistem Absensi Karyawan Berbasis Pencocokan Encoding Wajah dengan Library OpenCV | id |
| dc.title.alternative | Performance Analysis of Employee Attendance Sistem Based on Face Encoding Matching with OpenCV Library | - |
| dc.type | Tugas Akhir | - |
| dc.subject.keyword | Technology Effectiveness | id |
| dc.subject.keyword | Facial Recognition | id |
| dc.subject.keyword | Efektivitas teknologi | id |
| dc.subject.keyword | Employee Perception | id |
| dc.subject.keyword | Data Privacy | id |
| dc.subject.keyword | Time Attendance Sistem | id |
| Appears in Collections: | UT - Computer Engineering Tehcnology | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_J0304211017_8d742c2b6b1a433f8490d817f97ace53.pdf | Cover | 3.56 MB | Adobe PDF | View/Open |
| fulltext_J0304211017_8ab7e174cc384d33bf106453cb8573fb.pdf Restricted Access | Fulltext | 5.05 MB | Adobe PDF | View/Open |
| lampiran_J0304211017_d0ff52dea77145059479812ef4ced4b2.pdf Restricted Access | Lampiran | 376.49 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.