Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/165972
Title: Prediksi Sifat Fisikokimia Lemon (Citrus limon) secara Nondestruktif Menggunakan Near Infrared Spectroscopy (NIRS)
Other Titles: 
Authors: Sutrisno
Alfatih, Mochamad Naufal
Issue Date: 2025
Publisher: IPB University
Abstract: Lemon merupakan buah yang memiliki nilai ekonomis tinggi yang tidak hanya dimanfaatkan sebagai makanan dan minuman, tetapi juga dalam bidang kesehatan dan kecantikan karena kandungan nutrisinya yang baik. Penentuan sifat fisikokimia pada buah lemon membutuhkan metode yang cepat, efisien, dan nondestruktif. Salah satu metode untuk menentukan sifat fisikokimia pada buah adalah dengan menggunakan Near Infrared Spectroscopy (NIRS). Penelitian ini bertujuan menghasilkan metode prediksi sifat fiskokimia pada lemon meliputi Total Padatan Terarut (TPT), total asam, rasio gula-asam, dan kekerasan secara nondestruktif menggunakan NIRS. Sampel yang digunakan adalah buah lemon dengan tiga tingkat kematangan yang berbeda (n=75). Pengukuran spektrum NIRS dilakukan menggunakan NIRFlex N-500 fiber optic solid dengan panjang gelombang 1000-2500 nm. Pengukuran destruktif TPT, total asam, dan rasio gula-asam dilakukan menggunakan refractometer dan pengukuran kekerasan dilakukan menggunakan rheometer. Kalibrasi dan validasi dilakukan menggunakan metode Partial Least Squares (PLS). Pra-pengolahan dilakukan untuk meningkatkan hasil prediksi dengan jenis pra-pengolahan normalisasi, Standard Normal Variate (SNV), Smoothing Savitzky-Golay (SSG), dan de-trending. Evaluasi hasil kalibrasi dan validasi dilakukan berdasarkan nilai r, SEC, SEP, CV, RPD, dan konsistensi. Prediksi TPT yang terbaik diperoleh dengan pra-pengolahan de-trending 1 pada faktor PLS 13 (r = 0,85; SEC dan SEP = 0,43 dan 0,49 oBrix; RPD = 1,58; CV = 7,65 %; konsistensi = 92,11%). Parameter total asam diperoleh hasil prediksi yang terbaik dengan pra-pengolahan Standard Normal Variate (SNV) pada faktor 8 (r = 0,81; SEC dan SEP = 0,59 dan 0,68 %; RPD = 1,22; CV = 10,32%, dan konsistensi = 96,00 %). Prediksi rasio gula-asam didapatkan hasil terbaik dengan pra-pengolahan Standard Normal Variate (SNV) pada faktor 11 (r = 0,87; SEC dan SEP = 0,13 dan 0,15 oBrix/%; RPD = 1,64; CV = 15,29 %; dan konsistensi = 92,46 %). Sedangkan prediksi parameter kekerasan yang terbaik diperoleh dengan pra-pengolahan Smoothing Savitzky-Golay (SSG) pada faktor 12 (r = 0,72; SEC dan SEP = 3,90 dan 3,41 N; RPD = 1,13; CV = 9,96 %; dan konsistensi = 97,06 %. Hasil penelitian menunjukkan bahwa prediksi kandungan TPT dan rasio gula-asam pada lemon menggunakan NIRS menghasilkan model dengan kemampuan membedakan antara nilai tinggi dan rendah. Sementara itu, prediksi untuk parameter total asam dan kekerasan menghasilkan model yang kurang andal karena nilai RPD yang diperoleh berada di bawah 1,5. Kata kunci: lemon, NIRS, nondestruktif, PLS
Lemon is a fruit with high economic value, not only utilized in food and beverages, but also in the health and beauty sectors due to its rich nutritional content. Determining the physicochemical properties of lemon requires a fast, efficient, and non-destructive method. One such method is Near Infrared Spectroscopy (NIRS). This study aims to develop a non-destructive prediction method for the physicochemical properties of lemon, including Total Soluble Solids (TSS), total acidity, sugar-acid ratio, and hardness using NIRS. The samples used were lemons at three different maturity levels (n=75). NIRS spectra were measured using the NIRFlex N-500 fiber optic solid within a wavelength range of 1000–2500 nm. Destructive measurements of TSS, total acidity, and sugar-acid ratio were performed using a refractometer, while hardness was measured using a rheometer. Calibration and validation were carried out using the Partial Least Squares (PLS) method. Preprocessing was applied to improve prediction results, including normalization, Standard Normal Variate (SNV), Savitzky-Golay Smoothing (SSG), and de-trending. Calibration and validation results were evaluated based on r, SEC, SEP, CV, RPD, and consistency values. The best prediction for TSS was obtained with de-trending 1 preprocessing at PLS factor 13 (r = 0,85; SEC and SEP = 0,43 and 0,49 °Brix; RPD = 1,58; CV = 7,65%; consistency = 92,11%). For total acidity, the best prediction was obtained using SNV preprocessing at factor 8 (r = 0,81; SEC and SEP = 0,59 and 0,68%; RPD = 1,22; CV = 10,32%; consistency = 96,00%). The best sugar-acid ratio prediction was achieved using SNV preprocessing at factor 11 (r = 0,87; SEC and SEP = 0,13 and 0,15 °Brix/%; RPD = 1,64; CV = 15,29%; consistency = 92,46%). Meanwhile, the best hardness prediction was obtained with Savitzky-Golay Smoothing (SSG) preprocessing at factor 12 (r = 0,72; SEC and SEP = 3,90 and 3,41 N; RPD = 1,13; CV = 9,96%; consistency = 97,06%). The results showed that the prediction of Total Soluble Solids (TSS) and sugar-acid ratio in lemon using NIRS produced models capable of distinguishing between high and low values. Meanwhile, the prediction models for total acidity and firmness were less reliable, as indicated by RPD values below 1,5. Keywords: lemon, NIRS, nondestructive, PLS
URI: http://repository.ipb.ac.id/handle/123456789/165972
Appears in Collections:UT - Agricultural and Biosystem Engineering

Files in This Item:
File Description SizeFormat 
cover_F1401211009_2dea857d65c143a094d6b5d90a08f99f.pdfCover446.14 kBAdobe PDFView/Open
fulltext_F1401211009_f1d12f68dfd642dcaf9517882f50062e.pdf
  Restricted Access
Fulltext2.08 MBAdobe PDFView/Open
lampiran_F1401211009_a5d68d3e1e794e1097c99253e8fe0bc5.pdf
  Restricted Access
Lampiran255.27 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.