Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/165954
Title: Peramalan Produksi Crude Palm Oil (CPO) di Pulau Sumatera Menggunakan Neural Network Autoregressive (NNAR)
Other Titles: Forecasting of Crude Palm Oil (CPO) Production in Sumatra Island Using Neural Network Autoregressive (NNAR)
Authors: Anisa, Rahma
Djuraidah, Anik
Harahap, Farhan Abdillah
Issue Date: 2025
Publisher: IPB University
Abstract: Sektor kelapa sawit memiliki peran strategis dalam perekonomian Indonesia. Pada 2023, ekspor CPO (Crude Palm Oil) mencapai USD 25,61 miliar atau 9,90% dari total ekspor nasional. Pulau Sumatera menjadi wilayah penghasil utama, menghasilkan 25,69 juta ton (54,56% dari produksi nasional) dari 8,74 juta hektare (54,86% dari luas perkebunan nasional). Dominasi produksi CPO di Pulau Sumatera menunjukkan perlunya dukungan proyeksi yang sistematis dan terukur. Penelitian ini memanfaatkan data produksi bulanan CPO dan luas areal dari sepuluh provinsi di Sumatera selama Januari 2012 hingga Desember 2023 untuk membangun model peramalan tahun 2024. Metode Neural Network Autoregressive (NNAR) dipilih karena kemampuannya menangkap pola non-linear dalam data deret waktu. Model dikombinasikan dengan kerangka expanding window, penentuan lag optimal menggunakan Partial Autocorrelation Function (PACF), dan hyperparameter tuning dengan grid search terhadap jumlah neuron, learning rate decay, dan maxit. Evaluasi menggunakan Mean Absolute Percentage Error (MAPE) menunjukkan kinerja baik, dengan 9 dari 10 provinsi mencatat MAPE di bawah 20% dan MAPE tingkat pulau sebesar 7,49%. Produksi CPO tahun 2024 diproyeksikan mencapai 25,32 juta ton, dengan Provinsi Riau sebagai kontributor terbesar.
The palm oil sector played a strategic role in Indonesia’s economy. In 2023, CPO (Crude Palm Oil) exports reached USD 25.61 billion or 9.90% of total national exports. Sumatra Island was the main production area, producing 25.69 million tons (54.56% of national production) from 8.74 million hectares (54.86% of national plantation area). The dominance of CPO production in Sumatra Island indicated the need for systematic and measurable projection support. This study used monthly CPO production and plantation area data from ten provinces in Sumatra from January 2012 to December 2023 to develop a forecasting model for 2024. The Neural Network Autoregressive (NNAR) method was chosen for its ability to capture non-linear patterns in time series data. The model was combined with an expanding window framework, optimal lag selection using the Partial Autocorrelation Function (PACF), and hyperparameter tuning using grid search for the number of neurons, learning rate decay, and maxit. Evaluation using Mean Absolute Percentage Error (MAPE) showed good performance, with 9 out of 10 provinces recording MAPE below 20% and island-level MAPE of 7.49%. CPO production in 2024 was projected to reach 25.32 million tons, with Riau Province as the largest contributor.
URI: http://repository.ipb.ac.id/handle/123456789/165954
Appears in Collections:UT - Statistics and Data Sciences

Files in This Item:
File Description SizeFormat 
cover_G1401211007_146033773ab1488d95003c8c4969fa95.pdfCover759.21 kBAdobe PDFView/Open
fulltext_G1401211007_bed235e32f7545a280a58078a0287632.pdf
  Restricted Access
Fulltext3.39 MBAdobe PDFView/Open
lampiran_G1401211007_1b11ca5d6a774f4e98f6c5955ff05270.pdf
  Restricted Access
Lampiran1.59 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.