Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/165769
Title: Model Autoregressive Distributed Lag Pengaruh Faktor Cuaca Kota Bogor Terhadap Tinggi Muka Air di Jakarta
Other Titles: Autoregressive Distributed Lag Model of the Influence of Weather Factors in Bogor on Water Level in Jakarta
Authors: Masjkur, Mohammad
Rizki, Akbar
Wardani, Fajryanti Kusuma
Issue Date: 2025
Publisher: IPB University
Abstract: Model Autoregressive Distributed Lag (ARDL) merupakan analisis deret waktu multivariat yang mampu menangkap hubungan jangka pendek dan jangka panjang antara peubah. Salah satu indikator penting dalam sistem peringatan dini banjir di Jakarta adalah Tinggi Muka Air (TMA) di Pintu Air Manggarai. Kota Bogor, yang dikenal sebagai "Kota Hujan", berperan signifikan dalam siklus hidrologi kawasan Jabodetabek. Tingginya curah hujan di Bogor menyebabkan aliran air besar menuju Jakarta, yang pada akhirnya memengaruhi kondisi TMA. Penelitian ini menggunakan data harian dari tahun 2022 hingga 2024 dengan peubah respon berupa TMA, serta peubah penjelas meliputi curah hujan, suhu rata-rata, kelembapan relatif, dan kecepatan angin di Kota Bogor. Pemilihan lag optimal dilakukan menggunakan Cross Corelation Function (CCF). Model ARDL yang dibangun memiliki kemampuan peramalan yang baik dengan nilai Mean Absolute Percentage (MAPE) sebesar 2,83%. Hasil analisis menunjukkan bahwa peubah curah hujan, suhu rata-rata, dan kelembapan relatif berpengaruh positif terhadap TMA, sementara kecepatan angin berpengaruh negatif.
The Autoregressive Distributed Lag (ARDL) model is a multivariate time series approach that allows for the estimation of both short-run and long-run dynamics among variables. One of the key indicators in Jakarta's flood early warning system is the water level at the Manggarai Water Gate. Bogor City, known as the "Rain City," plays a significant role in the hydrological cycle of the Jabodetabek region. High rainfall in Bogor contributes to substantial water flow toward Jakarta, ultimately affecting the water level conditions. Daily data from 2022 to 2024 are used in this study, with the response variable being water level at the Manggarai Water Gate, and the explanatory variables including rainfall, average temperature, relative humidity, and wind speed in Bogor City. The optimal lag selection was conducted using the Cross-Correlation Function (CCF). The constructed ARDL model demonstrates strong forecasting performance, with a Mean Absolute Percentage Error (MAPE) of 2.83%. The analysis results indicate that rainfall, average temperature, and relative humidity have a positive effect on water level at the Manggarai Water Gate, while wind speed has a negative effect.
URI: http://repository.ipb.ac.id/handle/123456789/165769
Appears in Collections:UT - Statistics and Data Sciences

Files in This Item:
File Description SizeFormat 
cover_G1401211098_28198ee189d1485bac4395ef5acc14f3.pdfCover1.04 MBAdobe PDFView/Open
fulltext_G1401211098_3b704668a6df419e858e131b62f20786.pdf
  Restricted Access
Fulltext1.79 MBAdobe PDFView/Open
lampiran_G1401211098_2760f028cda844d4a0b15ddca4383f97.pdf
  Restricted Access
Lampiran835.08 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.