Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/165583
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSaefuddin, Asep-
dc.contributor.advisorOktarina, Sachnaz Desta-
dc.contributor.authorPutrandi, Raziqizzan-
dc.date.accessioned2025-07-22T06:01:12Z-
dc.date.available2025-07-22T06:01:12Z-
dc.date.issued2025-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/165583-
dc.description.abstractProgram Makan Bergizi Gratis (MBG) merupakan kebijakan pemerintah yang bertujuan meningkatkan kesejahteraan masyarakat dari aspek gizi dan kesehatan. Penelitian ini bertujuan untuk mempelajari persepsi publik terhadap program MBG melalui analisis sentimen dan pemodelan topik pada berita-berita online nasional. Data dikumpulkan melalui web crawling dari enam media berita online Indonesia selama periode 7 Januari 2025 hingga 28 Februari 2025. Analisis sentimen dilakukan dengan model IndoRoBERTa, sedangkan identifikasi topik menggunakan metode Latent Dirichlet Allocation (LDA). Hasil klasifikasi sentimen menunjukkan bahwa 44% berita bersentimen negatif, 35% netral, dan hanya 21% yang positif. Model IndoRoBERTa terbaik mencapai nilai balanced accuracy sebesar 87,57% dan F1-score sebesar 87,60% dengan kombinasi hyperparameter terbaik. Sementara itu, LDA menghasilkan sembilan topik utama dalam pemberitaan, di antaranya implementasi program di sekolah, isu anggaran, dukungan pemerintah, serta dampak ekonomi. Temuan ini menunjukkan bahwa opini publik terhadap MBG cenderung kritis, terutama terkait implementasi teknis dan distribusi program. Hasil penelitian ini diharapkan dapat menjadi bahan evaluasi bagi pemerintah dalam menyempurnakan pelaksanaan program serta meningkatkan transparansi dan efektivitasnya ke depan-
dc.description.abstractThe Free Nutritious Meal (MBG) program is a government initiative aimed at improving public welfare through better nutrition and health. This study seeks to study public perception of the MBG program by applying sentiment analysis and topic Modeling to national online news articles. Data were collected via web crawling from various media outlets during the period of January 7, 2025 to February 28, 2025. Sentiment classification was performed using the IndoRoBERTa model, while topic identification was carried out using Latent Dirichlet Allocation (LDA). Sentiment analysis revealed that 44% of the news articles were negative, 35% neutral, and only 21% positive. The best-performing IndoRoBERTa model achieved a balanced accuracy of 87.57% and an F1-score of 87.60% using optimized hyperparameters. Meanwhile, the LDA model identified nine key topics in the news coverage, including program implementation in schools, budgetary issues, government support, and economic impact. These findings indicate that publik sentiment toward the MBG program tends to be critical, especially regarding technical execution and distribution challenges. The results can serve as valuable input for policymakers to improve program implementation and enhance transparency and effectiveness in the future.-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titleANALISIS SENTIMEN DAN TOPIC MODELING TERKAIT PROGRAM MAKAN BERGIZI GRATIS (MBG) PADA MEDIA BERITA ONLINEid
dc.title.alternativeSentiment Analysis and Topic Modeling on Online News Media Related to Program Makan Bergizi Gratis (MBG)-
dc.typeSkripsi-
dc.subject.keywordlatent dirichlet allocationid
dc.subject.keywordanalisis sentimenid
dc.subject.keywordtopic modelingid
dc.subject.keywordprogram makan bergizi gratisid
dc.subject.keywordIndoRoBERTaid
dc.subject.keywordpemodelan topikid
dc.subject.keywordsentiment analysisid
Appears in Collections:UT - Statistics and Data Sciences

Files in This Item:
File Description SizeFormat 
cover_G1401211040_b14f2aceaddd4550ac150498f73b42df.pdfCover608.01 kBAdobe PDFView/Open
fulltext_G1401211040_8f8cd6d870c044c8aa675286b26feea3.pdf
  Restricted Access
Fulltext1.25 MBAdobe PDFView/Open
lampiran_G1401211040_bca81c1f59954884b99a68081e433700.pdf
  Restricted Access
Lampiran679.72 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.